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Abstract- A pair of vertices u, v is said to be strongly
resolved by a vertex s, if there exist at least one shortest
path from s to u passing through v, or a shortest path
from s to v passing throughu. A setWcV, is said to be a
strong metric generator if for all pairs u, v £ W, there exist
some elements € W such that s strongly resolves the pair u,
v. The smallest cardinality of a strong metric generator for G
is called the strong metric dimension of G. The strong met-
ric dimension (metric dimension) problem is to find a min-
imum strong metric basis (metric basis) in the graph. In
this paper, we solve the strong metric dimension and the
metric dimension problems for the circulant graph C (n,
+{1,2...J3), 1< j < Inf2,n > 3 and for the hyper-
cubes. We give a lower bound for the problem in case of
diametrically uniform graphs. The class of diametrically
uniform graphs includes vertex transitive graphs and hence
Cayley graphs.
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l. INTRODUCTION

A generator of a metric space is a set W of points in the
space with the property that every point of the space is
uniquely determined by its distances from the elements of
W. Given a simple and connected graph G = (V, E), we

consider the metricd: V xV — R+, where d(x, y) is the
length of a shortest path betweenx and y. (V,d) is clearly
a metric space. A vertex v € Vis said to distinguish two
verticesx and y if d(v,x) = d(v,y). A set W € V is said to
be a metric generator for G if any pair of vertices of G is
distinguished by some element of W. A minimum generator
is called a metric basis, and its cardinality the metric dimen-
sion of G, denoted by dim(G). For an ordered metric genera-
torW = {wq, w2 ...wk ¥ of V(G), we refer to the k-vector
(ordered k-tuple) c(v|W) =(d(v, wq), d(v, w2) ... d(v, wk)) as
the metric code (or representation) of v with respectto W.
The problem of finding the metric dimension of a graph
was first studied by Harary and Melter[2]. Slater described
the usefulness of these ideas into long range aids to naviga-
tion [3]. Melter and Tomescu [5] studied the metric dimen-
sion problem for grid graphs. This problem has been studied
for trees, multi- dimensional grids [6] and Torus Networks
[7]. Also, these concepts have some applications in chemistry
for representing chemical compounds [8] or to problems of
pattern recognition and image processing, some of which
involve the use of hierarchical data structures. Other appli-
cations of this concept to navigation of robots in networks
and other areas appear in [9, 10]. Khuller et al. [6] de-
scribe the application of this problem in the field of com-

puter science and robotics. Garey and Johnson [11] proved
that this problem is NP-complete for general graphs by a
reduction from 3-dimensional matching. Recently Manuel et
al. [12] have proved that the metric dimension problem is
NP-complete for bipartite graphs by a reduction from 3-
SAT, thus narrowing down the gap between the polynomial
classes and NP-complete classes of the metric dimension
problem. Some variations on resolvability or location number
have been appearing in the literature, like those about con-
ditional resolvability [15], locating domination [16], resolv-
ing domination [17] and resolving partitions [18, 19, 20,
21]. Given the metric basis of some graph and the repre-
sentation of all the wvertices, it is not possible to trace
back the graph uniformly. To overcome this, a new variant
of metric basis was introduced called strong metric basis.

Two vertices u, v are said to be strongly resolved by the
vertex s, if there exist at least one shortest path from s to
u passing through v, or a shortest path from s to v passing
through u. A subset W <V, is said to be a strong metric
generator if for all pairs u, v £ W, there exist some ele-
ment s € W such that s strongly resolves the pair u, v.
The smallest cardinality of a strong metric basis for G is
called the strong metric dimension of G denoted by
sdim(G).It is proved that sdim(G)= n—1 ifand only if G
is the complete graph of order n. For the cycle Cn of order
n, sdim(Cn) = [n/2] and if T is a tree, its strong metric
dimension equals the number of leaves of T minus 1 [18]. It
is known that the problem of computing the strong metric
dimension of a graph is NP-hard [22]. The aim of this paper
is to find the metric dimension and strong metric dimension
of circulant graphs.

1. DIAMETRICALLY VERTEX UNI-
FORM GRAPHS

Following symmetrical graphs such as Cayley graphs,
vertex transitive graphs, we discuss about the strong met-
ric diemnsion of a new class of sym- metrical graphs called
diametrically uniform graphs. The class of diamet- rically
uniform graphs includes vertex transitive graphs and
hence Cayley graphs. For each vertex u of a graph G,
the maximum distance d(u, v) to any other vertex v of G
is called its eccentricity and is denoted by ecc(u). In a
graph G, the maximum value of eccentricity of vertices of
G is called the diameter of G and is denoted by A. In a
graph G, the minimum value of eccentricity of vertices of
G is called the radius of G and is denoted by p. In a graph
G, the set of vertices of G with eccentricity equal to the
radius p is called the center of G and is denoted by Z(G).
Let G be a graph with diameter L. A vertex v of G is said
to be diametrically opposite to a vertex u of G, if d(u, v) =
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L. A graph G is said to be a diametrically vertex uniform
(DVU) graph if every vertex of G has at least one diametri-
cally opposite ver- tex. The set of diametrically opposite

vertices of u in G is denoted by D(u). An edge (u*, v*) of
G is said to be diametrically opposite to an edge (u, v) of

G, if d(u, u®) =& and d(v,v*) = A. A graph G is said to
be a diametrically edge uniform (DEU) graph if every edge
of G has at least one diametrically opposite edge. The set
of diametrically opposite edges of (u, v) in G is de- noted
by D(u, v). A complete graph is a diametrically vertex uni-
form graph with the diameter 1.

Lemma 2.1. Let G be a any graph, if two vertices u and v
are at diameter distance, then either u € W or v € W where
W is a strong metric generator.Using the above lemma, we
can arrive at a lower bound for the strong metric dimen-
sion of all diametrically vertex uniform graphs.

Theorem:Let G be a all diametrically vertex uniform graph ~—

of order n. Then sdim > [™]. )

Proof. In a all diametrically vertex uniform graph, for all
vertices v € V (G), there exist at least on vertex at diame-

ter distance.
culant graphs.

Hence by Lemma 2.1 sdim > [n] for all cir-
2

I1l. CIRCULANT GRAPHS

The circulant graph is a natural generalization of the double
loop network and was first considered by Wong and Cop-
persmith [23]. Circulant graphs have been used for decades
in the design of computer and telecommunication networks
due to their optimal fault-tolerance and routing capabilities
[24]. It is also used in VLSI design and distributed compu-
tation [25, 26, 27]. The term circulant comes from the na-
ture of its adjacency matrix. A matrix is circulant if all its
rows are periodic rotations of the first one. Circulant ma-
trices have been employed for designing binary codes [24].
Theoretical properties of circulant graphs have been studied
extensively and surveyed by Bermond et al. [21]. Every
circulant graph is a vertex transitive graph and a Cayley
graph [25]. Most of the earlier research concentrated on
using the circulant graphs to build interconnection net-
works for distributed and parallel systems [24, 25]. An
undirected circulant graph, denoted by C(n, ={1,2...j}),1
< j =In/2],n >3 is a graph with vertex setV = {0, 1 ..
n—1%} and edge set E = L(i, j):[j—i= s(modn), s € {1,2...
J33. It is clear that C(n, £1) is an undirected cycle Cn
and C(n, £{1,2...|n/2|}) is the complete graph Kn. Cp
is a subgraph of C(n, +{1,2..j}) for every j,1 < j <
[n/2], and is sometimes referred to as the outer cycle,

A. A lower bound for strong metric dimension
By Theorem 2.2, we can obtain the following lower bound
for a circulant graph

Theorem: Let G = C(n, £{1,2..

graph of order n. Then sdim > [mQ.
2

. J}) be a circulant

~ We now prove thatS 4m G)>’2’ L J
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Proof. In a circulantgrpahs for all vertices v € V (G), there
exist at least on vertex at diameter distance. Hence by
Lemma 2.1 sdim > [ng for all circulant graphs.

B. An upper bound for strong metric dimension
An upper bound can be obtained by exhibiting a strong
resolving set.

Theorem: Let G = C(n, +{1,2...j})be a circulant graph
of order n and n =4i(mod 2j), 2 <i <2j + 1. Then sdim = [ n/2
1+ |i/2] — 1. Labels of vertices are subjected to wrapa-
round convention.

Proof. We prove the theorem as follows. First we prove

[n] [i]
that s dim( G)<‘—‘ L J 1
LetV = {1,2,..n} be the vertexsetof G. We prove that
i
the subset W={1,2,.. ( —. L J 1%} of the vertex set V is a

strong resolving set of G. Consider two arbitrary vertices u
and v. without loss of generality assume that u<v. The ver-
tex u—dj € W and both u and v are at different distances.
Shortest path from u-dj € W to v passes through u if
[v—ul<i or shortest path from u—de Wdto u passes

i : . [nl il
throughV|f|u—v|<|Hence s dim( G)<‘—‘ LJ

Since G is vertex transitive graph any setof consecutive ver-

n 1
tices with the same cardinality . . L—J -1 is a strong
2 2

resolving set of G.

1 . Fora ver-

tex v there are exactly i—1 vertices at diameter distance. Because
of this, it can be easily shown that any subset of vertex set

[n] il
with cardinality ’ ’ ) L J 2 does not resolve G

IvV. HYPER CUBES

An r-dimensional hypercube Q' has vertices represented by
all the binary r — tuples with two vertices being adjacent if
and only if their corresponding r—tuples differ in exactly
one position. The decimal representation of the vertices is

given by the elements of the set {0, 1,2 ... 2" —1%. For con-
venience we use the symbol x + 1 instead of x, and there-

2"}

fore, the set of labels of the vertices is {1, 2, ...,

Theorem : Let G be an r-dimensional hypercube Q" then
sdim(@Q") =2 1.
Proof: Since an r-dimensional hypercube Qr is diametrical-

ly vertex uniform, from Theorem 2.2 we get sdim(Q") >
1 10 prove the upper bound, we show that the subset
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W =

{12,.. 2r—1} of vertexset of the r-dimensional hy-

percube Qr is a strong resolving metric basis. Consider two
arbitrary vertices u, v £ W. Without loss of generality as-

sume that u <v. The vertex u’= u—2r_1 is a vertex in W

and

it is at distance 1 from u. Clearly the shortest path

from u’ to v passes through u. Hence u and v are strong-

ly resolved. This implies that sdim(Q") < 2"%. Hence we

get that sdim(Q") =2
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