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Abstract- A pair of vertices u, v is said to be strongly 

resolved by a vertex s, if there exist at least one shortest 

path from s to u passing through v, or a shortest path 

from s to v passing through u. A set W⊆V, is said to be a 

strong metric generator if for all pairs u, v ∈/ W, there exist 

some element s ∈ W such that s strongly resolves the pair u, 

v. The smallest cardinality of a strong metric generator for G 

is called the strong metric dimension of G. The strong met-

ric dimension (metric dimension) problem is to find a min-

imum strong metric basis (metric basis) in the graph.  In 

this paper, we solve the strong metric dimension and the 

metric dimension problems for the circulant graph C (n, 

±{1, 2 . . . j}),  1 ≤ j ≤ ⌊n/2⌋, n ≥ 3 and for the hyper-

cubes.   We give a lower bound for the problem in case of 

diametrically uniform graphs.  The class of diametrically 

uniform graphs includes vertex  transitive  graphs  and hence 

Cayley graphs. 
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I. INTRODUCTION 

 

A generator of a metric space is a set W of points in the 

space with the property that every point of the space is 

uniquely determined by its distances from the elements of 

W. Given a simple and connected graph G = (V, E), we 

consider the metric d: V ×V → R
+ 

, where d(x, y) is the 

length of a shortest path between x and y. (V, d) is clearly 

a metric space. A vertex v ∈ V is said to distinguish two 

vertices x and y if d(v, x) = d(v, y). A set W ⊆ V is said to 

be a metric generator for G if any pair of vertices of G is 

distinguished by some element of W. A minimum generator 

is called a metric basis, and its cardinality the metric dimen-

sion of G, denoted by dim(G). For an ordered metric genera-

tor W = {w1, w2 ... wk } of V(G), we refer to the k-vector 

(ordered k-tuple) c(v|W) =(d(v, w1), d(v, w2) ... d(v, wk )) as 

the metric code (or representation) of v with respect to W . 

The problem of finding the metric dimension of a graph 

was first studied by Harary and Melter[2]. Slater described 

the usefulness of these ideas into long range aids to naviga-

tion [3]. Melter and Tomescu [5] studied the metric dimen-

sion problem for grid graphs. This problem has been studied 

for trees, multi- dimensional grids [6] and Torus Networks 

[7]. Also, these concepts have some applications in chemistry 

for representing chemical compounds [8] or to problems of 

pattern recognition and image processing, some of which 

involve the use of hierarchical data structures. Other appli-

cations of this concept to navigation of robots in networks 

and other areas appear in [9, 10]. Khuller et al. [6] de-

scribe the application of this problem in the field of com-

puter science and robotics. Garey and Johnson [11] proved 

that this problem is NP-complete for general graphs by a 

reduction from 3-dimensional matching. Recently Manuel et 

al. [12] have proved that the metric dimension problem is 

NP-complete for bipartite graphs by a reduction from 3-

SAT, thus narrowing down the gap between the polynomial 

classes and NP-complete classes of the metric dimension 

problem. Some variations on resolvability or location number 

have been appearing in the literature, like those about con-

ditional resolvability [15], locating domination [16], resolv-

ing domination [17] and resolving partitions [18, 19, 20, 

21]. Given the metric basis of some graph and the repre-

sentation of all the vertices, it is not possible to trace 

back the graph uniformly. To overcome this, a new variant 

of metric basis was introduced called strong metric basis.  

 

Two vertices u, v are said to be strongly resolved by the 

vertex s, if there exist at least one shortest path from s to 

u passing through v, or a shortest path from s to v passing 

through u. A subset W ⊆ V, is said to be a strong metric  

generator  if for all pairs u, v ∈/ W , there  exist  some ele-

ment  s ∈ W such  that s  strongly  resolves the pair  u, v.   

The smallest  cardinality  of a strong metric basis for G is 

called the strong metric dimension of G denoted by 

sdim(G).It is proved that sdim(G) = n − 1 if and only if G 

is the complete graph of order n. For the cycle Cn of order 

n, sdim(Cn ) = ⌈n/2⌉ and if T is a tree, its strong metric 

dimension equals the number  of leaves of T minus 1 [18]. It 

is known that the problem of computing the strong metric 

dimension of a graph is NP-hard  [22]. The aim of this paper 

is to find the metric dimension and strong metric dimension 

of circulant graphs. 

 

II. DIAMETRICALLY  VERTEX UNI-

FORM GRAPHS 

 

Following symmetrical graphs  such  as Cayley  graphs,  

vertex transitive graphs, we discuss about the strong met-

ric diemnsion of a new class of sym- metrical graphs  called 

diametrically uniform  graphs.   The  class of diamet- rically 

uniform  graphs  includes  vertex transitive graphs  and  

hence Cayley graphs.   For each vertex  u of a graph  G, 

the maximum  distance  d(u, v) to any other  vertex  v of G 

is called its eccentricity  and  is denoted  by ecc(u). In a 

graph  G, the maximum  value of eccentricity  of vertices  of 

G is called the diameter  of G and is denoted  by λ.  In a 

graph  G, the minimum  value of eccentricity of vertices of 

G is called the radius of G and is denoted by ρ. In a graph  

G, the set  of vertices  of G with eccentricity  equal to the 

radius ρ is called the center of G and is denoted by Z (G).  

Let G be a graph with diameter λ.  A vertex v of G is said 

to be diametrically opposite to a vertex u of G, if d(u, v) = 
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λ.  A graph G is said to be a diametrically vertex uniform 

(DVU) graph if every vertex of G has at least one diametri-

cally opposite ver- tex.  The set of diametrically opposite 

vertices of u in G is denoted by D(u). An edge (u∗, v∗) of 

G is said to be diametrically opposite to an edge (u, v) of 

G, if d(u, u
∗

) = λ and d(v, v
∗

) = λ.  A graph G is said to 

be a diametrically edge uniform (DEU) graph if every edge 

of G has at least one diametrically opposite edge.  The set  

of diametrically  opposite edges of (u, v) in G is de- noted 

by D(u, v). A complete graph is a diametrically vertex uni-

form graph with the diameter 1. 

 

Lemma 2.1.  Let G be a any graph, if two vertices u and v 

are at diameter distance, then either u ∈ W or v ∈ W where 

W is a strong metric generator.Using the above lemma,  we 

can arrive  at a lower bound  for the strong metric dimen-

sion of all diametrically vertex uniform graphs. 

 

Theorem:Let G be a all diametrically vertex uniform  graph 

of order n. Then  sdim ≥ ⌈ n ⌉. 
 

Proof.  In a all diametrically vertex uniform graph, for all 

vertices v ∈ V (G), there exist  at least  on vertex  at diame-

ter  distance.   Hence by Lemma  2.1 sdim ≥ ⌈ n ⌉ for all cir-

culant graphs. 

 

III. CIRCULANT GRAPHS 

 

The circulant graph is a natural generalization of the double 

loop network and was first  considered by Wong and Cop-

persmith [23]. Circulant graphs have been used for decades 

in the design of computer and telecommunication networks 

due to their optimal fault-tolerance and routing capabilities 

[24]. It is also used in VLSI design and distributed compu-

tation [25, 26, 27]. The term circulant comes from the na-

ture of its adjacency matrix. A matrix is circulant if all its 

rows are periodic rotations of the first one. Circulant ma-

trices have been employed for designing binary codes [24]. 

Theoretical properties of circulant graphs have been studied 

extensively and surveyed by Bermond et al. [21]. Every 

circulant graph is a vertex transitive graph and a Cayley 

graph [25]. Most of the earlier research concentrated on 

using the circulant graphs to build interconnection net-

works for distributed and parallel systems [24, 25]. An 

undirected circulant  graph, denoted  by C (n, ±{1, 2 ... j}), 1 

≤ j ≤⌊n/2⌋, n ≥3 is a graph with vertex set V  = {0, 1 ... 

n−1} and edge set E = {(i, j):|j−i|≡ s(modn), s ∈ {1, 2 ... 

j}}. It is clear that C (n, ±1) is an undirected cycle Cn  

and C (n, ±{1, 2 ... ⌊n/2⌋}) is the complete graph Kn . Cn  

is a subgraph of C (n, ±{1, 2 ... j}) for every j, 1 ≤ j ≤ 

⌊n/2⌋, and is sometimes referred to as the outer cycle. 

 

A. A lower bound for strong metric  dimension 

By Theorem 2.2, we can obtain the following lower bound 

for a circulant graph 

 

Theorem: Let G = C (n, ±{1, 2 . . . j}) be a circulant 

graph of order n. Then sdim ≥ ⌈n /2⌉. 
 

Proof. In a circulant grpahs for all vertices  v ∈ V (G), there  

exist at least on vertex at diameter distance. Hence by 

Lemma 2.1 sdim ≥ ⌈n /2⌉ for all circulant graphs. 

 

B. An  upper bound for strong metric  dimension 

An upper bound can be obtained by exhibiting a strong 

resolving set. 

 

Theorem:  Let G = C (n, ±{1, 2 ... j}) be a circulant graph 

of order n and n ≡ i (mod 2j), 2 ≤ i ≤ 2j + 1. Then sdim = ⌈ n/2 

⌉ + ⌊ i/2 ⌋ − 1.  Labels of vertices are subjected to wrapa-

round convention. 

 

Proof.  We prove the theorem as follows. First we prove 

that 1
22

)dim( 
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Let V = {1, 2, ... n} be the vertex set of G. We prove that 

the subset W={1,2,… 1
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} of the vertex set V is a 

strong resolving set of G. Consider two  arbitrary vertices u 

and v. without loss of generality assume that u <v. The ver-

tex u−dj ∈ W and both u and v are at different distances. 

Shortest path from u−dj ∈ W to v passes through u if 

|v−u|≤i or shortest path from u−dj∈ W to u passes 

through v if ivu  Hence  1
22
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Since G is vertex transitive graph
,
 any set of consecutive ver-

tices with the same cardinality 1
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We now prove that
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. For a ver-

tex v there are exactly i−1 vertices at diameter distance. Because 

of this, it can be easily shown that any subset of vertex set 

with cardinality 
2
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 does not resolve G  

 

IV. HYPER CUBES 

 

An r-dimensional hypercube Q
r 

has vertices represented by 

all the binary r − tuples with two vertices being adjacent if 

and only if their corresponding r−tuples differ in exactly 

one position. The decimal representation of the vertices is 

given by the elements of the set {0, 1, 2 ... 2
r 

−1}. For con-

venience we use the symbol x + 1 instead of x, and there-

fore, the set of labels of the vertices is {1, 2, ..., 2
r 
}. 

 

Theorem : Let G be an r-dimensional hypercube Qr , then 

sdim(Qr ) = 2r−1. 

Proof:  Since an r-dimensional hypercube Q
r 

is diametrical-

ly vertex uniform, from Theorem 2.2 we get sdim(Q
r 

) ≥ 

2
r−1

.  To prove the upper bound, we show that the subset 
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W = {1, 2, ... 2
r−1

} of vertex set of the r-dimensional hy-

percube Q
r 

is a  strong resolving metric basis. Consider two 

arbitrary vertices u, v ∈/ W. Without loss of generality as-

sume that u < v. The vertex u’= u−2
r−1 

is a vertex in W 

and it is at distance 1 from u. Clearly the shortest path 

from u’
 
to v passes through u. Hence u and v are strong-

ly resolved. This implies that sdim(Q
r 

) ≤ 2
r−1

. Hence we 

get that sdim(Q
r 

) = 2
r−1
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