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Abstract - The matching preclusion number of a graph is the 

minimum number of neither edges whose deletion in a graph 

has a neither perfect matching nor an almost perfect matching. 

For many interconnection networks, the optimal sets are 

precisely those induced by a single vertex. Recently the 

conditional matching preclusion number of a graph was 

introduced to look for sets beyond those induced by a single 

vertex. It is defined to be the minimum number of edges whose 

deletion results in a graph with no isolated vertices and has 

neither a perfect matching nor almost perfect matching. In this 

paper we find the conditional matching preclusion number for 

triangular ladder, Cn with parallel chords, Trampoline Graph, 

diamond Snake Graph and K- Polygonal Snake Graph. 
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I. INTRODUCTION 

 

In graph theory and network analysis, the Robustness of a 

graph or class of graphs measures its resilience to the removal 

of edges or vertices. Robustness can be formalized in a variety 

of ways, depending on how the edges or vertices to be removed 

are chosen. Robustness is of practical concern to those working 

with physical networks, including those involved in gene 

regulation, disease transmission, and the internet. A gene or 

computer network that is robust with respect to random 

removal retains much of its functionality in the face of random 

failures. If the elimination of vertices or edges is directed in 

some fashion, then robustness implies resillience to targeted 

attacks. This kind of robustness is also of interest to 

epidemiologists who want to break up disease transmission 

networks by targeted vaccinations. In certain applications, 

every vertex requires a special partner at any given time and 

the matching preclusion number measures the robustness of 

this requirement in the event of link failures.  

 

A matching in a graph G= (V,E) is a subset M of edges, no two 

of which have a vertex in common. The vertices belonging to 

the edges of a matching are said to be saturated by the 

matching. The others are unsaturated. A perfect matching in a 

graph is a set of edges such that every vertex is incident with 

exactly one edge in this set. An almost perfect matching in a 

graph is a set of edges such that every vertex except one is 

incident with exactly one edge in this set, and the exceptional 

vertex is incident to none. So if a graph has a perfect matching, 

then it has an even number of vertices; if a graph has almost-

perfect matching, then it has an odd number of vertices. The 

matching preclusion number of a graph G, denoted by mp(G), 

is minimum number of edges whose deletion leaves the 

resulting graph without a perfect matching or almost perfect 

matching. Any such optimal set is called an optimal matching 

preclusion set.        , if G has neither a perfect matching 

nor an almost-perfect matching. 

 

The concept of matching preclusion was introduced by 

Brigham et al. [1] and further studied by Cheng and 

Liptak[3,7]. In [1], the matching preclusion number was 

determined for three classes of graphs namely complete 

bipartite graphs and hypercube. Hence in these inter-

connection networks, it is desirable to have the property that 

the only optimal matching preclusion sets are those whose 

elements are incident to a single vertex. The conditional 

matching preclusion number of a graph G, denoted by       , 

with n vertices is the minimum number of edges whose 

deletion results in a graph without an isolated vertex and does 

not have a perfect matching if n is even or almost-perfect 

matching if n is odd. Any such optimal set is called an optimal 

conditional matching preclusion set.         If G has 

neither a perfect matching nor an almost-perfect matching. If a 

conditional matching preclusion set does not exist then 

also         . The conditional matching preclusion for 

hypercube-like interconnection networks has been studied by 

Park et al. [8]. Further Cheng et al. determine the conditional 

matching preclusion number for the arrangement graphs [5], 

tori and related Cartesian products [6], certain bipartite graphs 

[10] and twisted cubes [11]. 

 

In chemistry conditional matching preclusion is termed as anti-

kekule number. In organic molecule graphs, perfect matching’s 

corresponding to kekule structures, playing an important role 

in analysis of the resonance energy and stability of 

hydrocarbon compounds. Cyvin and Gutman systematically 

gave [12] detailed enumeration formulas for kekule structures 

of various types of benzenoids. Kardos et al. showed [13] that 

fullerene graphs have exponentially many kekule structures. 

Anti-kekule structures. An anti-kekule set of G with kekule 

structures is the set S such that G-S is a connected graph and it 

has no kekule structures. An anti-kekule set of the smallest 
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cardinality is called a minimal anti-kekule set, and its 

cardinality is the anti-kekule number of G and it is denoted by 

ak(G). The anti-kekule number has been studied in [12-18].  

 

II. PRELIMINARIES 

 

Lemma 2.1. [4] Let G be a graph with an even number of 

vertices. Then           ≤ where      is the minimum 

degree of G. 

In lemma 2.1 without the condition of no isolated vertices an 

isolated vertex will be the basic obstruction and so deleting all 

edges incident to G will produce a trivial matching preclusion 

set.,. Now for a graph with no isolated vertex a basic 

obstruction to a perfect matching will be the existence of a path 

u-v-w where the degree of u and the degree of w are 1. So to 

produce such an obstruction set, one can pick any path u-v-w 

the original graph and delete all edges incident to either u or w 

but not v. 

 

Lemma 2.2.[4] Let G be a graph with an even number of 

vertices. Suppose   , then             where      

                           : u and v are distance 

2apart} and        is the degree function           if u and 

v are adjacent and 0 otherwise.  

Now we define an upper bound for conditional matching 

preclusion number of a general graph G with minimum degree 

   . In the following lemma we deal with a larger family of 

graphs with     

 

Lemma 2.3: Let G be a graph     and let u-v-w is a path of 

length 3, such that dG(v)>dG(u)and dG(v)≥dG(w). Then mp1 

(G)≤Ve(G). We note that the condition     and let u-v-w is a 

path of length 3, such that dG(v)>dG(u)and dG(v)≥dG(w) is to 

ensure that the resulting graph (after edges were removed) has 

no isolated vertices. If mp1 (G) =Ve(G) then G is called 

conditionally maximally matched.  We call a solution of the 

form induced by Ve a conditional matching preclusion set. 

 

III.  MAIN RESULTS 

 

3.1. Triangular Ladder 

 

Definition: A triangular ladder        is a graph obtained by 

completing the ladder          by edges        for 

       .(see Figure 1) [19]. 

 
Figure 1: Triangular ladder graph. 

Theorem 1: Let G be the Triangular ladder graph. Then mp1 

(G) =3. 

 

Proof: Let MV be the set of all vertical edges and MH be the set 

of all horizontal edges and MC be the set of all cross edges in 

triangular ladder. Thus each of V, H, C contains a perfect 

matching’s MV, MH, and MCrespectively.We now claim that 

mp1 (G)>2. Suppose e1 and e2 edges are in triangular ladder. 

Clearly e1 and e2 belong to almost two categories of edges. But 

there exists a perfect matching in G\{ e1,e2 } the third category 

of edges. This implies mp1 (G)>2. Hence mp1 (G)≥3. 

 

We have only to prove that mp1 (G) ≤3.  Now   u-v-w  is  a 

path in triangular ladder with dG(u)=2, dG(v)= 3 and dG(w)=4. 

Remove the edges one end incident to u but not at v, similarly 

remove the edges one end incident to w but not at v. The 

resulting graph has uv and vw pendant edges. If the pendant uv 

is chosen in a perfect matching, the w vertex is left unsaturated 

and vice versa. Therefore mp1 (G) =3. 

 

IV.  CYCLE   WITH PARALLEL CHORDS 

 

Definition: A graph is said to be the cycle    with parallel 

chords if it is obtained from cycle.                 }by 

adding the parallel chords, 

                         ⌊  ⁄ ⌋   ⌊  ⁄ ⌋   according as n is 

odd or even.(see Figure 2)[19]. 

 
Figure 2: Cn with parallel chords. 

 

Theorem 2: Let G be the Cn with parallel chords. Then mp1 (G) 

=2. 

 

Proof: We now claim that mp1 (G)>1. Let Hibe the 

Hamiltonian cycle of Cn with parallel chords. Clearly the cycle 

Hi is of even length. Let M1
i
 consist of alternate edges in Hi 

and let M2
i
 consist of remaining edges in Hi, such that 

M1= n
i=1M1

i
 and M2= n

i=1M2
i
, 1≤ i≤ n. Clearly M1 and M2 are 

perfect matching’s. Let e  Hi then either e  M1
i
 or e  M2

i
.  

Without loss generality e  M1
i
 then M2

i
 is a perfect matching. 

Let E
’
 be the set of edges in E (G\ M1  M2). Suppose e   E

’
, 

then M1 and M2 not containing e. This implies mp1 (G)>1. 

Hence mp1 (G) ≥2 

 

We have only to prove that mp1 (G) ≤2. Now u-v-w is a path in 

Cn with parallel chords with dG(u)=2, dG(v)= 3 and dG(w)=3. 
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Remove the edges one end incident to u but not at v, similarly 

remove the edges one end incident to w but not at v. The 

resulting graph has uv and vw pendant edges. If the pendant uv 

is chosen in a perfect matching, the w vertex is left unsaturated 

and vice versa. Therefore mp1 (G) =2. 

 

V. TRAMPOLINE GRAPH 

 

Definition: A chordal graph is a graph which every cycle of 

length    has a chord. A sun or a trampoline is a chordal 

graph which has a Hamiltonian cycle                     

where each          is a degree 2. A complete sun or 

complete trampoline is a graph in which               } is a 

clique we call this sun as a 0-sun. A 1-sun is obtained from 0-

sun by including triangles on the edges 

                             if this procedure is repeated t 

times then we obtain t- layered sun or simply a t-sun. (See 

Figure 3)[21]. 

 

Theorem 3:Let G be the Trampoline Graph. Then mp1 (G) =2. 

Proof: We now claim that mp1 (G)>1. Let Hi be the 

Hamiltonian cycle of Trampoline Graph. Clearly the cycle Hi is 

of even length.  Let M1
i
 consist of alternate edges in Hi and let 

M2
i
 consist of remaining edges in Hi, such that M1= n

i=1M1
i
 

and M2= n
i=1M2

i
, 1≤ i≤ n. Clearly M1 and M2 are perfect 

matching’s. Let e  Hi then either e  M1
i
 or e  M2

i
.  Without 

loss generality e  M1
i
 then M2

i
 is a perfect matching. Let E

’
 be 

the set of edges in E (G\ M1  M2). Suppose e  E
’
, then M1 and 

M2 not containing e. This implies mp1 (G)>1. Hence mp1 (G) 

≥2. 

 

 
                       0-sun                         1-sun 

 

Figure 3: Trampoline Graph 

 

We have only to prove that mp1 (G) ≤2.  Now   u-v-w  is  a 

path in Trampoline Graph with dG(u)=2, dG(v)= 3 and 

dG(w)=2. Remove the edges one end incident to u but not at v, 

similarly remove the edges one end incident to w but not at v. 

The resulting graph has uv and vw pendant edges. If the 

pendant uv is chosen in a perfect matching, the w vertex is left 

unsaturated and vice versa. Therefore mp1 (G) =2. 

VI.  DIAMOND SNAKE GRAPH 

 

Definition: A diamond snake graph is obtained by joining 

vertices    and      to two new vertices    and    for   

          (see Figure 4) [20]. 

 
 

Figure 4: diamond Snake Graph. 

 

Theorem 4:  Let G be the Diamond Snake Graph. Then mp1 

(G) =2. 

 

Proof: Let MA be the set of all acute edges and MO be the set of 

all obtuse edges in diamond Snake Graph. Thus each of acute, 

obtuse contains a perfect matching’s MA and MO respectively. 

We now claim that mp1 (G)>1. Suppose e1 in diamond Snake 

Graph. Clearly e1 belong to almost one category of edges. But 

there exists a perfect matching in G\{ e1 } in the other category 

of edges. This implies mp1 (G)>1. Hence mp1 (G) ≥2. 

 

We have only to prove that mp1 (G) ≤2.  Now   u-v-w  is  a 

path in triangular ladder with dG(u)=2, dG(v)= 4 and  dG(w)=2. 

Remove the edges one end incident to u but not at v, similarly 

remove the edges one end incident to w but not at v. The 

resulting graph has uv and vw pendant edges. If the pendant uv 

is chosen in a perfect matching, the w vertex is left unsaturated 

and vice versa. Therefore mp1 (G) =2. 

 

VII. K - POLYGONAL SNAKE GRAPH 

 

Definition: Consider n copies of the path    where    denotes a 

path graph with K vertices    . A graph obtained from the 

path           by identifying the pendant vertices of the 

   copy of the path     with      and    for          is 

called as K- polygonal snake of length n. (see Figure 5)[22]. 

 

 
 

Figure 5: K - Polygonal Snake Graph. 
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Theorem 5:  Let G be the K - Polygonal Snake Graph. Then 

mp1 (G) =2. 

 

Proof: Let MH be the set of all horizontal edges and MAO be the 

set of all acute edges and obtuse edges in K - Polygonal Snake 

Graph. Thus each of horizontal, acute, obtuse contains a 

perfect matching’s MAO and MH respectively. We now claim 

that mp1 (G)>1. Suppose e1 in K- Polygonal Snake Graph. 

Clearly e1 belong to almost one category of edges. But there 

exists a perfect matching in G\{ e1 } in the other category of 

edges. This implies mp1 (G)>1. Hence mp1 (G) ≥2. 

 

 We have only to prove that mp1 (G) ≤2.  Now   u-v-w  is  a 

path in K- Polygonal Snake Graph with dG(u)=2, dG(v)=4 and  

dG(w)=2. Remove the edges one end incident to u but not at v, 

similarly remove the edges one end incident to w but not at v. 

The resulting graph has uv and vw pendant edges. If the 

pendant uv is chosen in a perfect matching, the w vertex is left 

unsaturated and vice versa. Therefore mp1 (G)=2. 

 

VIII.  CONCLUSION 

 

In this paper, we determine the conditional matching 

preclusion number for Triangular Ladder, Cn with Parallel 

Chords, Trampoline Graph, Diamond Snake Graph and K- 

Polygonal Snake Graph. Further determining the conditional 

matching preclusion for other graphs are under investigation. 
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