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Abstract : 

The Kremser’s equations have been serving successfully for many years as 

limiting design and analytical criterion for idealized countercurrent 

absorption, desorption and extraction systems that contains immiscible 

solvents. The performance equations developed by the Kremser 

subsequently revisited by Mott Sounders and George Granger Brown, and 

elaborated the same, which is popularly known as Kremser - Sounders- 

Brown equations. Much later G. E. Goring critically analyzed the Kremser 

- Sounders- Brown equations gave better insight. All these equations relate 

absorption factor or stripping factor or extraction factor, inlet and outlet 

mole fraction of the streams to the number of stages. This work, we have 

presented the derivation for the Kremser - Sounders- Brown equation in 

more simplified way in terms of mole ratio co-ordinates for the case of 

absorption and desorption. Further, the physical meanings underlying 

these performance equations were presented explicitly. 
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I. Introduction 

  

The amount of solute transferred between two immiscible solvent streams either gas-liquid or 

liquid-liquid in a countercurrent contact depends on the relative flow rates of the streams, the 

equilibrium distribution (yn= mxn) of the solute between solvent phases, and the number of 

contacting states provided. A compact analytical relationship among these variables was first 

developed by Kremser and subsequently it is modified by Mott Sounders and George Granger 

Brown and is critically analyzed later by G. E. Goring for ideal cases where the equilibrium 

distribution is assumed to linear. Solute free (i.e., mole ratios) coordinates are very useful in 

staged operation [1-6]. In stage analysis mole ratios are usually designated by Y and X, whereas 

mole fractions are designated by y and x for E stream and R stream respectively [4, 5].  Mole 

ratios are equal to mole fractions for very dilute systems. However, mole ratios are used in the 

following derivation. 

II. Derivation 

 

The Consider a cascade having Np stages in which two distinctly different streams are brought in 

contact and allowed to attain equilibrium and also separated at equilibrium. In such situation 
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solute transfer occurs in two ways [5]. Either transfer from E R or R E. This is usually 

denoted as absorption or desorption for the case of transfer of solute from Gas  Liquid or 

Liquid  Gas respectively. Let Es and Rs are the nontransferable component flow rates. 

Therefore, the relation between E and Es is Es= E (1-y). Similarly, for R stream the relation 

between R and Rs is Rs= R (1-x). In the following sections a compact analytical relationship 

among absorption factor/ stripping factor, relative flow rates of the streams, the equilibrium 

distribution (Yn= mXn) of the solute between solvent phases, and the number of contacting stages 

was developed for two cases. 

Case-I: Countercurrent cascade:  The transfer between E phase and R phase [5] 

transfer from E  R (i.e., for better understanding the transfer of solute is from Gas  Liquid) 

 

Figure 1. Countercurrent multistage cascade where transfer is from E R 
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Multiply and divide with  1A factor gives on RHS gives 
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Add and subtract Y0 on right side 
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Implies the above equation is true for n =Np 
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From overall material balance 
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Combining following two equation gives 
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On reversing Eq.34 we get 
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The physical meaning of the above expression is: 

For Y0 = 0 (i.e., fresh R-stream ) the LHS is fraction absorbed  
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Applying logarithm on both sides gives 
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For Fresh R the concentration of solute in incoming R-stream is X0=0 

Therefore the number ideal plates for transfer of solute from E to Fresh R is as follows 
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Suppose the inlet for E stream is denoted as Y1 (i.e. inlet) and out let is denoted as Y2 as follows 

 

                                                                                                                                 

Figure 2 . (a) Vertical gas- liquid contactor where E steam at bottom; (b) Horizontal gas- liquid 

contactor where E-stream at left end
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Case-II: Countercurrent cascade:  The transfer between R phase and E phase [5] 
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transfer from R  E (i.e., for better understanding the transfer of solute is from Liquid  Gas) 

 

Figure 3. Countercurrent multistage cascade where transfer is from R E 
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Adding and subtracting 1nX on RHS gives 
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Applying log on both sides gives 

 

 

































SSXX

XX
SN

pp

p

NN

N

p
11

1loglog
1

10

                                                                      (79) 

  S

SSXX

XX

N
pp

p

NN

N

p
log

11
1log

1

10


































                                                                                 (80) 



Journal of Applied Science and Engineering Methodologies  

Volume 3, No.3 (2017): Page.535-546                                                                                                                          

www.jasem.in 

544 

 

  S

SS

m

Y
X

m

Y
X

N

p

p

p

N

N

N

p
log

11
1log

1

1

0









































                                                                                 (81) 

(Or) 

In terms of absorption factor 
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Equation 75 can be written in a meaningful way as follows 
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(or) 
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The physical meaning of the above expression is: 

For pure E stream 01pNY
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Suppose the inlet for R stream X2 (i.e. inlet) and out let is denoted as X1 as follows 

 

 

                                                     

                                         

Figure 4 . (a) Vertical  gas-liquid contactor where R steam at top; (b) horizontal gas-liquid  

contactor where R-stream at right end
             

Therefore the number of plates Np is 
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In terms of Absorption factor 
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III. Conclusion  

 

Absorption and desorption performance equations for gas-liquid contactor in terms of absorption 

factor and stripping factor, inlet and outlet mole ratios of the streams to the number of stages 

have been presented. The physical meaning underlying these performance equations were 

presented explicitly. The derivations presented in this paper can conveniently be used in terms of 

mole fraction without modification. 
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