
International Journal of Computer Science and Engineering Communications
Volume.6, Issue.1 (2018): Page.1780-1787

www.ijcsec.com

1780



An Elementary Algorithm for Pattern Matching

Nidhi Bansal

Assistant Professor,

Department of Computer Science,

Hindustan University, Chennai, India

goelnidhi8@gmail.com

Abstract—A string matching algorithm aims to find one or several occurrences of a string

within another. String matching is a classical problem in computer science. Our approach

presents an elementary and efficient algorithm. First, we find some index values of pattern of

length m from text T, the algorithm returns the position of the first character of the desired

substring in the text. In second phase it matches whether the substring at this index value

matches the actual pattern P. The algorithm works in linear time, if the number of occurrences

of the pattern in a string is very less.

Keywords: Pattern matching, Time complexity, String length

Citation: Nidhi Bansal.(2018). An Elementary Algorithm for Pattern Matching. International

Journal of Computer Science and Engineering Communications, 6(1), 1780-1787. Article ID

6117801787.

Copyright © 2018 Nidhi Bansal., This is an open access article distributed under the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

I. INTRODUCTION

Strings are a collection of patterns of different type. Many patterns are found within a larger

string or text. There are algorithms called as String searching algorithms or string matching

algorithms used to find one, several or all occurrences of a defined string (pattern) in a larger

string (typically a text). Let Σ be an alphabet which is usually a finite set of the pattern and the

text to be searched as vectors. The Σ may be a usual human alphabet (for example, the letters A

through Z in the Latin alphabet). Other applications may use binary alphabet (Σ = {0,1}) or

DNA alphabet (Σ = A,C,G,T}) in bioinformatics [1].We assume that the text is an array T[1..n]

of length n and that the pattern is an array of length P[1..m] of length m and that m<=n. The

character arrays T and P are often called strings of characters. We say that pattern P occurs

with shift s in text T (or equivalently that the pattern P occurs beginning at position s+1 in text

T) if 0<=s<=n-m and T[s+1….s+m] = P[1..m]. If P occurs with shift s in T then we calls a valid

shift otherwise we call s an invalid shift. The string matching algorithm is the problem of

.

mailto:goelnidhi8@gmail.com

International Journal of Computer Science and Engineering Communications
Volume.6, Issue.1 (2018): Page.1780-1787

www.ijcsec.com

1781

finding all valid shift with which a pattern P occurs in given text T [2].There are various types

and classifications of the string matching. There are two types of string matching Exact string

matching and Approximate string matching. The search to be done on exact occurrence of the

pattern comes underneath the category of exact string matching. Approximate string matching

allows inaccurate searching acceptance founded on specific applications. Based on the number

of patterns, string matching has two classifications: Single Pattern string matching and Multiple

Pattern string matching. In Single Pattern string matching a single pattern is to be searched in

the text whereas in multiple pattern string matching multiple patterns are searched in the text.

Based on the order of searching string matching have four classifications i.e. left to right

matching, right to left matching, specific order matching and no order matching [3]. The string

matching problem has a lot of different applications in multiple areas [4]. First, an adapted and

efficient algorithm of this problem can aid to enhance the responsiveness of text-editing

software. Other applications in information technology include web search engines, spam

filters, natural language processing, computational biology (search of particular pattern in DNA

sequence), and feature detection in digital images.

A string search algorithm takes a text T of length n and a pattern P of length m as the input.

The text is then scanned using a window that has length equal to the size of the pattern. The

leftmost ends of the pattern and window are aligned. The brute force method works by

comparing each character of the pattern with that of the text and in case of a mismatch the

pattern is shifted by one position to the right. Other existing algorithms generally work in two

phases: the pre-processing phase and the matching phase. The pre-processing phase is used to

determine the number of positions by which the pattern needs to be shifted in case of a

mismatch in the matching phase. The main goal of string matching algorithms is to increase

efficiency by reducing the number of comparisons and increase the length of shifts in case of a

mismatch. In this paper, we present we present an elementary and efficient algorithm. Our

algorithm works in two phases: the pre-processing phase and the matching phase. The pre-

processing phase will determine the index value according to which pattern is shifted. The

pattern might appear zero time, once, a few times or many times in the text depending to its

length. We can observe and analyse the effectiveness of algorithm by measuring its processing

time and comparing to other algorithms. The rest of the paper is organized as follows. Section 2

discusses about some previously existing algorithms. Section 3 presents the proposed

algorithm. Section 4 presents the experimental results of the proposed algorithm and finally the

paper is concluded in Section 5.

II. LITERATURE REVIEW

A. Brute Force Algorithm

 The very basic and conventional string matching strategy is Brute Force Algorithm. It is also

known as naïve algorithm. It achieves the character comparisons among the input text and

pattern from left to right manner. If the mismatch occurs or a complete match then it shifts one

step to the right [4]. In this algorithm there is no pre-processing stage and it needs the constant

extra space. The main advantage of this algorithm it is very easy to implement but it is very

slow compared to other algorithms [5]. The time complexity of this algorithm is O (mn) and the

expected number of character comparison is 2
n
.

B. Boyer Moore Horspool Algorithm

 The Boyer Moore Horspool algorithm or Horspool algorithm is used to find the substring in

the input text or large document collections. In 1980, this algorithm was published by Nigel

International Journal of Computer Science and Engineering Communications
Volume.6, Issue.1 (2018): Page.1780-1787

www.ijcsec.com

1782

Horspool. In the Boyer-Moore- Horspool algorithm, it compares the text character T[i] with the

last character p[j] of the pattern. If they match, then it compares the previous characters of the

text with corresponding characters in the pattern consecutively right to left, until to detect

either a frequency of the pattern or a mismatch on a text character [6]. The algorithm uses the

bad character heuristic and the good suffix heuristic to determine the pattern shift in case of

mismatch of a pattern character. The Boyer Moore algorithm works with the property that the

speed of algorithm is directly proportional to the length of the pattern. However the algorithm

suffers from the phenomenon that it tends to work inefficiently on small alphabets. The skip

distance tends to stop growing with the pattern length because substrings re-occur frequently

[7]. Also, the pre-processing for the good suffix heuristic is difficult to understand and

implement. Furthermore, it suffers from the need for very large tables or state machines and

thus requires extra space [7]. It also requires extra time for processing the pattern.

C. Rabin- Karp Algorithm

 Rabin-Karp Algorithm is the simplest string searching algorithm. This algorithm was

developed by Michael O. Rabin and Richard M. Karp in 1987. This algorithm uses the hash

function to discover the potential pattern in the input text. For the length of text n and pattern p

of mutual length m, its average and best case running time is O (n+m) in space O (p), and also

the worst-case time is O (nm) in space O (m)[8]. It is used to discover the hash value of the

certain pattern substring and then it discovers the hash value of all possible m length substring

of the input text. If the hash value of the pattern and text substring match than it returns the

value otherwise next substring value is matched to calculate the string of length m.

D. Knuth-Morris-Pratt Algorithm

 The Knuth–Morris–Pratt were developed a linear time string searching algorithm by analysis

of the brute force algorithm or naive algorithm. The algorithm was developed in 1974 by

Donald Knuth and Vaughan Pratt, and independently by James H. Morris and they published it

jointly in 1977.The Knuth-Morris-Pratt algorithm moderates the total number of comparisons

of the pattern against the input string. A matching time of O(n) is accomplished by evading

associations with essentials of „S‟ that have earlier been involved in the comparison with some

of the specific element of the pattern „p‟ to be matched. i.e., backtracking on the string „S‟

certainly not occurs[9]. The KMP algorithm makes use of the information gained by previous

character comparisons unlike the naïve algorithm. Hence it never needs to move backwards in

the text, this makes the algorithm useful for processing large files [10]. However the

performance of the KMP algorithm degrades for longer patterns as the possibility of character

mismatch increases. As observed, all of the algorithms discussed rely on pre-processing the

pattern and using the pre-computed values for searching a string. The Boyer Moore and Knuth–

Morris–Pratt algorithm are more effective for searching. However, Boyer Moore algorithm

fails to achieve the desired performance for shorter patterns. On the other hand although the

KMP algorithm works well for shorter patterns, it is far more complex than the proposed

algorithm. The proposed algorithm is easy to understand and implement.

III. PROPOSED WORK

In this algorithm we work in two phases. First phase is the pre-processing phase and second

phase is matching phase .In pre-processing phase, we find some index values of substrings of

length m from text T and the second phase matches these substrings with actual pattern P. We

tried to show the working of two phases by following two algorithms.

International Journal of Computer Science and Engineering Communications
Volume.6, Issue.1 (2018): Page.1780-1787

www.ijcsec.com

1783

A. Phase 1 Pre-Processing Phase

 In the first phase that is pre-processing phase we will find the some index values from each

substring of length m from text T which matches with first and last character of pattern P and

insert these index values into a the queue Q. The approximate running time of pre-processing

phase is O (n-m).

1. n = length S;

2. m = length P;

3. x <- P[0], y <- P[m-1];

4. For (i=0 to n-m)

5. If (S[i]==x && S[m+i-1]==y)

6. Insert i into the queue Q

7. Return Q

B. Phase 2 Matching Phase

 Matching phase totally depends on the size of the queue. In this phase, we find the substrings

of length m on the basis of index value and compare the pattern with the substrings of size m. If

a match occurs, then it is called as successful hit otherwise it will be spurious hit . The

approximate running time of matching algorithm O (qm) where q is the size of the queue and m

is the length of pattern. Following algorithm shows the matching phase.

1. While(Q!= empty)

2. {

3. I= dequeue()

4. K =I;

5. count==0;

6. For(j=0 to m-1)

7. {

8. If(P[j]==S[K])

9. {

10. K=K+1;

11. count = count+1;

12. } // end of if condition

13. else

14. Goto 1

15. }

16. If(count==m)

17. {

18. Print(“pattern occur at location ”, i);

19. }

20. } // end of while loop

21. Exit

IV. EXPERIMENTAL RESULTS

The Figure 1 shows the example problem. Then in figure 2, 3 and 4 we have shown the steps

during the search of the Pattern P = a a b of length 3 in a text of length 14. We have given a

text T = a a b a a c a a d a a b a d and the queue Q.

International Journal of Computer Science and Engineering Communications
Volume.6, Issue.1 (2018): Page.1780-1787

www.ijcsec.com

1784

A. Phase 1 Pre-Processing Phase

 For our example n=14, m=3. For each i the algorithm matches the character at ith index to the

first character of pattern. If there is a match then it matches the last character of the pattern with

corresponding position in string. If last character also matches then ith index is stored in queue

Q. In figure 2, For i=0, value at ith index matches the first character of the pattern. So we will

check whether last character also matches the corresponding value. Here last character also

matches with corresponding position in string. So we will store ith value i.e. 0 as the first

element in queue Q. For i=1 to 11, we do same procedure checking the value at ith index for

given example. It is shown in Figure 3 and 4. After pre-processing phase our queue contains 2

elements, it means there may be matching pattern at these two indexes. We will do this in next

phase.

B. Phase 2 Matching Phase

 We dequeue index values from the queue until queue is empty and match pattern at that index

value. We will match the value at corresponding index of string with the first character of

pattern till the length of the pattern. If the pattern matches with the pattern at index value it

becomes a hit. As seen for our example in Figure 5 and 6, there are two hits and both hits are

successful, no spurious hit. So for our given example, we find the matching pattern at two

places i.e. there are two occurrences of pattern in text.

Fig 1 String Length T=14, Pattern Length P=3

Fig 2 Pre-Processing for i=0, Match the value at i=0 of T with i=0 of P

String T=

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a a b a a c a a d a a b a d

Pattern P=

0 1 2

a a b

For i=0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a a b a a c a a d a a b a d

a a b

Queue Q=

0

International Journal of Computer Science and Engineering Communications
Volume.6, Issue.1 (2018): Page.1780-1787

www.ijcsec.com

1785

Fig 4: Pre-Processing Phase for i =9,10,11

Fig 3: Matching Phase for first element of the queue.

For i=9 to 11

a a b a a c a a d a a b a d

a a b

Queue Q=

0 9

a a b a a c a a d a a b a d

a a b

a a b a a c a a d a a b a d

a a b

Queue Q:

0 9

Dequeue first element of the queue

9

Match the value at i=0 with corresponding value in pattern until pattern length

a a b a a c a a d a a b a d

a a b

It is a Successful Hit.

International Journal of Computer Science and Engineering Communications
Volume.6, Issue.1 (2018): Page.1780-1787

www.ijcsec.com

1786

Fig 4: Matching Phase for next element of the queue.

Table 1: Comparison of Time Complexities Of Pattern Matching Algorithms

 C. Comparison of Time Complexities of Pattern Matching Algorithms

 We compared time complexity for both the phases for our proposed algorithm with some

existing algorithms as shown in Table 1.For our example time taken for pre-processing phase

is O(n-m) = O(11). But for matching phase time taken is only O(q*m) = O(6) which is better

than time taken by Rabin Karp and KMP i.e. O(17). So proposed algorithm provides best

results for matching phase as compared to some existing algorithms.

Algorithms Time Complexity For

Pre-Processing

Time

Complexity For

Matching

Brute force

algorithm

No pre-processing

O((n-m+1)*m)

Boyer Moore O(m + |Σ|)

O(n)

Rabin karp O(m) O(n+m)

Knuth-morris-pratt O(m) O(n+m)

Proposed algorithm O(n-m) O(q*m)

Queue Q:

9

Dequeue first element of the queue

Match the value at i=0 with corresponding value in pattern until pattern length

a a b a a c a a d a a b a d

a a b

It is a Successful Hit.

Now Queue is empty.

International Journal of Computer Science and Engineering Communications
Volume.6, Issue.1 (2018): Page.1780-1787

www.ijcsec.com

1787

V. CONCLUSIONS

We evaluated the performance of some existing algorithms with our proposed algorithm. Our

proposed algorithm is a linear time pattern matching algorithm. It could be better to other

algorithms in some constraints. The running time of this algorithm depends on size of the

queue i.e. the number of index value in the queue which shows that the number of expected

patterns in text T. If there is only one element in the queue then maximum time taken by

matching phase would be O (m), where m is the size of pattern. So if the no of occurrences of

pattern in string is less this algorithm gives best result compared to Rabin-Karp and KMP

algorithm.

REFERENCES

[1] Wikipedia The free Encyclopedia en.wikipedia.org/wiki/String_searching_algorithm

[2] Thomas H Corman, Charles E. Leiserson, Ronald L. Rivest & Clifford Stein “Introduction

to Algorithms- String matching”, EEE Edition, 2nd Edition, Page no 906-907.

[3] Alberto Apostolico and ZviGalil, “ Pattern Matching Algorithms” Published in Oxford

University Press, USA, 1st edition, May 29, 1997.

[4] Rahul M, Diwate B, Satish J, Alaspurkar, “ A. Study of Different Algorithms for Pattern

Matching”, International Journal of Advanced Research in Computer Science and Software

Engineering. 2013; 3(3):1–8.

[5] Al-Mazroi A, Rashid NA, “A Fast Hybrid Algorithm for the Exact String Matching

Problem” American Journal of Engineering and Applied Sciences. 2011; 4(1):102–07.

[6] Boyer RS, Moore JS, “A fast string searching algorithm”, Communication of the ACM.

1977; 20(10):762–72.

[7] http://www.cs.utexas.edu/~moore/best-ideas/string-searching/index.html

[8] Shivaji SK, Prabhudeva S, “Plagiarism Detection by using Karp-Rabin and String

Matching Algorithm Together”, International Journal of Computer Applications. 2015;

116(23):1–5.

[9] Gope AP, Behera RN, “A Novel Pattern Matching Algorithm in Genome Sequence

Analysis”, (IJCSIT) International Journal of Computer Science and Information

Technologies.2014; 5(4):5450–57.

[10] http://cs.indstate.edu/~kmandumula/presentation.pdf

