ISSN: 2278-2397

# **Skew Chromatic Index of Theta Graphs**

Joice Punitha M.<sup>1</sup>, S. Rajakumari<sup>2</sup>

<sup>1</sup>Department of Mathematics, Bharathi Women's College (Autonomous) Chennai - 600108, Tamil Nadu, India <sup>2</sup>Department of Mathematics, R. M. D. Engineering College, Kavaraipettai – 601206, Tamil Nadu, India Email: srajakumari23@yahoo.com

**Abstract**—A two edge coloring of a graph G is said be a skew edge coloring if no two edges of G are assigned the same unordered pair of colors. The least number of colors required for a skew edge coloring of G is called its skew chromatic index denoted by s(G). This article provides a method for skew edge coloring of uniform theta and quasi-uniform theta graphs as two component colorings by defining two mappings f and g from the edge set E(G) to the set of colors  $\{1, 2, 3, ..., k\}$ . The minimum number of colors k which is known as the skew chromatic index is determined depending upon the number of edges of G. This work also proves that the bound on the skew chromatic index  $s(G) \ge \max\{\Delta(G), k(|E(G)|)\}$  is sharp for the family of graphs considered for skew edge coloring.

**Keywords**—edge coloring; skew chromatic index; generalized theta graph; uniform theta graph; quasi-uniform theta graph

### I. INTRODUCTION

Edge coloring problems in graphs arise in several computer science disciplines [1]. One of which is register allocation during code generation in a computer programming language compiler. This article considers a finite and simple graph G whose vertex set is V and edge set is E. A proper edge coloring of G is an assignment of colors to the edges such that adjacent edges are assigned different colors [2]. The least number of colors required for such an edge coloring of G is its chromatic index denoted by  $\gamma'(G)$ . Vizing [3] has shown that for any simple graph G,  $\chi'(G)$  is either  $\Delta(G)$  or  $\Delta(G) + 1$ , where  $\Delta(G)$  is the highest degree of a graph G. Edge coloring problem has been proved to be NP-complete by Holyer [4]. This work includes skew edge coloring problems which are motivated from the analysis of skew Room squares [5]. Marsha introduced skew chromatic index and the related concepts [6]. The skew chromatic index s(G) have already been determined for comb, ladder, Mobius ladder and circular ladder graphs. [7, 8]. An assignment of color pairs of the form  $\{a_i, b_i\}$  to each edge  $e_i$  of G such that (i) the  $a_i$ 's and the  $b_i$ 's separately form component edge colorings of G and (ii) all these pairs are distinct is called a skew edge coloring of G.

All the notations and definitions which appear in this article are the same as in [9].

## II. LOWER BOUND ON SKEW CHROMATIC INDEX

The component coloring of a skew edge coloring is itself an edge coloring and therefore we have  $s(G) \ge \chi'(G)$ . But Vizing's theorem states that for any simple graph,  $\Delta(G) \le \chi'(G) \le \Delta(G) + 1$ . Hence  $s(G) \ge \Delta(G)$ . Suppose

if 'k' colors are used for skew edge coloring, then there are  $\binom{k+1}{2}$  unordered pairs of colors and this number must be greater than or equal to the number of edges in G. Let k(m) denote the smallest integer 'k' satisfying  $\binom{k+1}{2} \ge m$  where 'm' denotes the number of edges in G. Thus the best lower bound for s(G) is  $s(G) \ge \max\{\Delta(G), k(|E(G)|)\}$  [6]. This work mainly proves that the bound on the skew chromatic index given here is sharp for uniform theta and quasi-uniform theta graphs.

#### III. UNIFORM THETA GRAPHS

Definition 3.1: [10] A graph  $\Theta(s_1, s_2, ..., s_n)$  which consists of two end vertices namely north pole (N) and south pole (S) joined by n internally disjoint paths called longitudes (L) of length greater than one is called a generalized theta graph, and the number of internal vertices in each longitude  $L_i$  being  $s_i$ ,  $1 \le i \le n$ .

Definition 3.2: [10] A uniform theta graph  $\Theta(n, l)$  is a generalized theta graph with l longitudes  $L_1, L_2, ..., L_t$  such that  $|L_1| = |L_2| = ... = |L_t| = n$ , and  $|L_t|$  being the number of internal vertices in  $L_t$ . See Fig. 1.



Theorem 3.1: A uniform theta graph  $\Theta(n, l)$ ,  $n \ge 3$  and  $3 \le l \le 2n - 2$  is skew edge colorable.

International Journal of Computing Algorithm Volume: 06 Issue: 02 December 2017 Page No.59-63

ISSN: 2278-2397

*Proof:* Consider a uniform theta graph 
$$G = \Theta(n, l)$$
,  $n \ge 3$  and

$$\begin{split} &3 \leq l \leq 2n-2. \text{ Let } V(G) = \{N\} \bigcup \{S\} \bigcup \{v_i, 1 \leq i \leq nl\} \text{ and } \\ &E(G) = \{(Nv_i) \bigcup (v_iv_{l+i}) \bigcup (v_{l+i}v_{2l+i}) \bigcup (v_{2l+i}v_{3l+i}) \bigcup ... \\ &\bigcup (v_{(n-2)l+i}v_{(n-1)l+i}) \bigcup (v_{(n-1)l+i}S), 1 \leq i \leq l\}. \end{split}$$

Here |V(G)| = nl + 2 and |E(G)| = (n+1)l.

Define the mappings  $f: E(G) \rightarrow \{1, 2, 3, ..., k\}$  $g: E(G) \to \{1, 2, 3, ..., k\}$  as follows where k is the smallest

positive integer satisfying 
$$\binom{k+1}{2} \ge (n+1)l$$
. i.e.,

 $\binom{k+1}{2} \ge m$ , the number of edges of the graph.

For  $1 \le i \le l$ , define

$$\begin{split} f\left(Nv_{i}\right) &= i \\ f\left(v_{i}v_{l+i}\right) &= \begin{cases} l+i, & l+i \leq k \\ r, & l+i \equiv r \; (\text{mod } k) \end{cases} \end{split}$$

$$f(v_{l+i}v_{2l+i}) = \begin{cases} 2l+i, & 2l+i < k \\ k, & 2l+i \equiv 0 \pmod{k} \\ r, & 2l+i \equiv r \pmod{k} \end{cases}$$

$$f(v_{2l+i}v_{3l+i}) = \begin{cases} k, & 3l+i \equiv 0 \pmod{k} \\ r, & 3l+i \equiv r \pmod{k} \end{cases}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$f(v_{(n-2)l+i}v_{(n-1)l+i}) = \begin{cases} k, & (n-1)l+i \equiv 0 \pmod{k} \end{cases}$$

$$f(v_{(n-2)l+i}v_{(n-1)l+i}) = \begin{cases} k, & (n-1)l+i \equiv 0 \pmod{k} \\ r, & (n-1)l+i \equiv r \pmod{k} \end{cases}$$

$$f(v_{(n-1)l+i}S) = \begin{cases} k, & nl+i \equiv 0 \pmod{k} \\ r, & nl+i \equiv r \pmod{k} \end{cases}$$

The mapping 'f' assigns the different colors  $\{1, 2, 3, ..., l\}$ to the l edges incident to the vertex N. The assignment of colors to any two adjacent edges on each of the longitudes  $L_i$ and to the edges incident to the vertex S is a proper coloring. Suppose  $f(v_{l+i}v_{2l+i}) = f(v_{2l+i}v_{3l+i})$ , then 2l + i and 3l + i are in the same residue class [r] modulo k. This is true if and only if  $3l + i \equiv 2l + i \pmod{k}$ . This implies  $k \mid l$ , a contradiction. Thus 'f' defines a proper edge coloring and is called the first component coloring of  $\Theta(n, l)$ .

For  $1 \le i \le l$ , define

$$\begin{split} g\left(Nv_{i}\right) &= i \\ g\left(v_{i}v_{l+i}\right) &= \begin{cases} l+i, & l+i \leq k \\ r+q, & l+i \equiv r \pmod{k} \end{cases} \\ \\ g\left(v_{i+i}v_{2l+i}\right) &= \begin{cases} 2l+i, & 2l+i \equiv 0 \pmod{k} \\ q-1, & 2l+i \equiv 0 \pmod{k} \\ r+q, & 2l+i \equiv r \pmod{k}, r+q \leq k \\ r+q-k, & 2l+i \equiv r \pmod{k}, r+q > k \end{cases} \\ \\ g\left(v_{2l+i}v_{3l+i}\right) &= \begin{cases} q-1, & 3l+i \equiv r \pmod{k}, r+q \leq k \\ r+q-k, & 3l+i \equiv r \pmod{k}, r+q > k \end{cases} \\ \vdots &\vdots &\vdots \end{split}$$

$$g(v_{(n-2)l+i}v_{(n-1)l+i}) = \begin{cases} q-1, & (n-1)l+i \equiv 0 \pmod{k} \\ r+q, & (n-1)l+i \equiv r \pmod{k}, r+q \leq k \\ r+q-k, & (n-1)l+i \equiv r \pmod{k}, r+q > k \end{cases}$$

$$g(v_{(n-1)l+i}S) = \begin{cases} q-1, & nl+i \equiv 0 \pmod{k} \\ r+q, & nl+i \equiv r \pmod{k}, r+q \leq k \\ r+q-k, & nl+i \equiv r \pmod{k}, r+q > k \end{cases}$$

where 'q' is the quotient in each case mod k. Thus  $\frac{1}{2}$ defines a proper edge coloring and is called the second component coloring of  $\Theta(n, l)$ . The two component colorings of  $\Theta(n, l)$  defined by f(E(G)) and g(E(G)) is as follows. The first 'k' edges are assigned the colors of the form (c, c), c = 1, 2, 3, ..., k. In the second set of 'k' edges, the first k-1 edges are assigned the colors of the form (c, c)+ 1), c = 1, 2, 3, ..., k - 1. The  $k^{th}$  edge is assigned the color (k, 1) as the ordered pair (k, k + 1) is not permissible. In the third set of 'k' edges, the first k-2 edges are assigned the colors of the form (c, c + 2), c = 1, 2, 3, ..., k - 2. The (k - 2)1)<sup>th</sup> and the  $k^{th}$  edge are assigned the colors (k-1, 1) and (k, 1)2) respectively as the ordered pairs (k-1, k+1) and (k, k+1)2) are not permissible. Thus the pairs of colors (f, g) assigned to each edge in  $\Theta(n, l)$  are all distinct and forms the skew edge coloring of G. See Fig. 2.

Theorem 3.2: Let  $G = \Theta(n, l)$ ,  $n \ge 3$  and  $3 \le l \le 2n - 2$  be a

uniform theta graph. Then  $s(G) = \left[ \frac{-1 + \sqrt{1 + 8(n+1)l}}{2} \right]$ .



Fig. 2. (a) First component coloring of  $\Theta(6,4)$ 

- (b) Second component coloring of  $\Theta(6,4)$
- (c) Skew edge coloring of  $\Theta(6,4)$  with s(G) = 7

International Journal of Computing Algorithm Volume: 06 Issue: 02 December 2017 Page No.59-63

ISSN: 2278-2397

*Proof*: Since there are (n + 1)l edges in G, its skew edge coloring will require at least (n + 1)l pairs of colors. If 'k' colors are used for coloring, then there are  $\binom{k+1}{2}$ 

unordered pairs. This  $\binom{k+1}{2} \ge |E(G)|$ . Therefore fix 'k' in

such a way that  $\binom{k+1}{2} \ge (n+1)l$ . It follows that

 $k^2 + k - (2nl + 2l) \ge 0$ . This is a quadratic equation in 'k'. Its solution gives the required value of s(G) = k =

$$\left\lceil \frac{-1+\sqrt{1+8(n+1)l}}{2} \right\rceil.$$

By comparing with the bound on s(G) as discussed in section II, the skew chromatic index obtained is equivalent to k(|E(G)|) which is an optimal solution for the skew chromatic index of uniform theta graphs  $\Theta(n, l)$  for  $n \ge 3$ and  $3 \le l \le 2n - 2$ . Hence for a given  $\Theta(n, l)$ , we immediately obtain its s(G) by a simple manipulation.

# IV. OUASI UNIFORM THETA GRAPHS

In this section, we determine the skew chromatic index of quasi-uniform theta graphs for  $n \ge 3$  and  $3 \le l \le 2n - 2$ .

Definition 4.1: [10] A quasi-uniform theta graph is a generalized theta graph with l longitudes  $L_1, L_2, ..., L_r$  such that  $|L_1| = |L_2| = \dots = |L_{l-1}| < |L_l|$ , and  $|L_l|$  being the number of internal vertices in  $L_i$ . It is said to be even or odd according as  $|L_{i-1}| + |L_i|$  is even or odd. It is obvious that every uniform theta graph is also an even quasi-uniform theta graph. See Fig. 3.

Theorem 4.1: Let G be a quasi-uniform theta graph (even or odd) with l longitudes  $L_1, L_2, ..., L_l$  and n vertices on each  $L_i$ ,  $1 \le i \le l-1$  and n+t vertices on  $L_l$ , where  $t = \left| L_{l} \right| - \left| L_{l-1} \right|, \quad n \ge 3 \quad \text{and} \quad 3 \le l \le 2n - 2.$  Then G admits skew edge coloring and its skew chromatic index is  $s(G) = \left\lceil \frac{-1 + \sqrt{1 + 8[(n+1)l + t]}}{2} \right\rceil.$ 

$$s(G) = \left\lceil \frac{-1 + \sqrt{1 + 8[(n+1)l + t]}}{2} \right\rceil.$$

 $G = \Theta(s_1, s_2, ..., s_{l-1}, s_l)$ where  $s_1 = s_2 = \dots = s_{l-1} = n$ ,  $s_l = n + t$  be a quasi-uniform theta graph with  $n \ge 3$  and  $3 \le l \le 2n - 2$ .

Let  $V(G) = \{N\} \cup \{S\} \cup \{v_1, 1 \le i \le nl\} \cup \{v_{i+1}, 1 \le i \le t\}$  and  $E(G) = \{(Nv_i) \cup (v_i v_{l+i}) \cup (v_{l+i} v_{2l+i}) \cup \dots \cup (v_{(n-2)l+i} v_{(n-1)l+i}),$  $1 \leq i \leq l \} \cup \{ v_{(n-1)l+i} S, 1 \leq i \leq l-1 \} \cup \{ v_{nl+i} v_{nl+(i+1)}, 0 \leq i \leq t-1 \}$  $\bigcup \{v_{nl+t}S\}$ .

Here |V(G)| = nl + t + 2 and |E(G)| = (n+1)l + t.

Define the mappings  $f: E(G) \rightarrow \{1, 2, 3, ..., k\}$  $g: E(G) \to \{1, 2, 3, \dots, k\}$  as follows where k is the smallest positive integer satisfying  $\binom{k+1}{2} \ge (n+1)l + t$ .

For  $1 \le i \le l$ , define

$$f(Nv_i) = i$$

$$f(v_i v_{l+i}) = \begin{cases} l+i, & l+i \leq k \\ r, & l+i \equiv r \pmod{k} \end{cases}$$

$$f(v_{l+i}v_{2l+i}) = \begin{cases} 2l+i, & 2l+i < k \\ k, & 2l+i \equiv 0 \pmod{k} \\ r, & 2l+i \equiv r \pmod{k} \end{cases}$$

$$f(v_{2l+i}v_{3l+i}) = \begin{cases} k, & 3l+i \equiv 0 \pmod{k} \\ r, & 3l+i \equiv r \pmod{k} \end{cases}$$

$$f(v_{2l+i}v_{3l+i}) = \begin{cases} k, & 3l+i \equiv 0 \pmod{k} \\ r, & 3l+i \equiv r \pmod{k} \end{cases}$$
: : : :

$$f(v_{(n-2)l+i}v_{(n-1)l+i}) = \begin{cases} k, & (n-1)l+i \equiv 0 \pmod{k} \\ r, & (n-1)l+i \equiv r \pmod{k} \end{cases}$$

$$f(v_{(n-1)l+i}S) = \begin{cases} k, & nl+i \equiv 0 \pmod{k} \\ r, & nl+i \equiv r \pmod{k} \end{cases}$$

For 
$$0 \le i \le \left| \begin{array}{c} t \\ 2 \end{array} \right|$$
,

$$f(v_{nl+i}v_{nl+(l+1)}) = \begin{cases} k, & nl+l+2i \equiv 0 \pmod{k} \\ r, & nl+l+2i \equiv r \pmod{k} \end{cases}$$

$$f(v_{nl+i}S) = \begin{cases} k, & nl+l+1 \equiv 0 \pmod{k} \\ r, & nl+l+1 \equiv r \pmod{k} \end{cases}$$

$$f(v_{nl+1}S) = \begin{cases} k, & nl+l+1 \equiv 0 \pmod{k} \\ r, & nl+l+1 \equiv r \pmod{k} \end{cases}$$

The following two cases arise when we color the remaining

$$\left\lfloor \frac{t-1}{2} \right\rfloor$$
 edges

$$(v_{nl+\frac{t}{2}+1},v_{nl+\frac{t}{2}+2}),(v_{nl+\frac{t}{2}+2},v_{nl+\frac{t}{2}+3}),...,\ (v_{nl+t-2},v_{nl+t-1}),$$

 $(v_{nl+t-1}v_{nl+t})$  on the longitude  $L_t$ .

case (i): 
$$t$$
 even. For  $1 \le i \le \frac{t}{2} - 1$ ,

$$f(v \bigvee_{nl+\frac{t}{2}+i \ nl+\frac{t}{2}+(i+1)} v ) \ = \ \begin{cases} k \,, & n\,l+l+t-(2\,i-1) \equiv 0 \ (\bmod \ k) \\ r \,, & n\,l+l+t-(2\,i-1) \equiv r \ (\bmod \ k) \end{cases}$$

case (ii): 
$$t$$
 odd. For  $1 \le i \le \left| \frac{t}{2} \right|$ ,

$$f(v_{nl+\left\lfloor\frac{t}{2}\right\rfloor+i}, v_{nl+\left\lfloor\frac{t}{2}\right\rfloor+(i+1)}) = \begin{cases} k, & nl+l+2\left\lfloor\frac{t}{2}\right\rfloor-(2i-1) \equiv 0 \pmod{k} \\ r, & nl+l+2\left\lfloor\frac{t}{2}\right\rfloor-(2i-1) \equiv r \pmod{k} \end{cases}$$

Thus f' defines a proper edge coloring and is called the first component coloring of the quasi-uniform theta graph.

ISSN: 2278-2397



Fig. 3. (a) Odd quasi-uniform theta graph (b) Even quasi-uniform theta graph

For  $1 \le i \le l$ , define

$$g(v_{i}v_{l+i}) = \begin{cases} l+i, & l+i \leq k \\ r+q, & l+i \equiv r \pmod{k} \end{cases}$$

$$g(v_{l+i}v_{2l+i}) = \begin{cases} 2l+i, & 2l+i \leq k \\ q-1, & 2l+i \equiv 0 \pmod{k} \end{cases}$$

$$r+q, & 2l+i \equiv r \pmod{k}, r+q \leq k \\ r+q-k, & 2l+i \equiv r \pmod{k}, r+q > k \end{cases}$$

$$g(v_{2l+i}v_{3l+i}) = \begin{cases} q-1, & 3l+i \equiv r \pmod{k}, r+q \leq k \\ r+q-k, & 3l+i \equiv r \pmod{k}, r+q \leq k \end{cases}$$

$$r+q, & 3l+i \equiv r \pmod{k}, r+q > k \end{cases}$$

$$\vdots & \vdots & \vdots$$

$$g(v_{(n-2)l+i}v_{(n-1)l+i}) = \begin{cases} q-1, & (n-1)l+i \equiv r \pmod{k}, r+q \leq k \\ r+q-k, & (n-1)l+i \equiv r \pmod{k}, r+q \leq k \end{cases}$$

$$r+q-k, & (n-1)l+i \equiv r \pmod{k}, r+q \leq k \end{cases}$$

$$r+q-k, & (n-1)l+i \equiv r \pmod{k}, r+q \leq k \end{cases}$$

$$r+q-k, & nl+i \equiv r \pmod{k}, r+q \leq k \end{cases}$$

$$r+q-k, & nl+i \equiv r \pmod{k}, r+q \leq k \end{cases}$$

$$r+q-k, & nl+l+2i \equiv r \pmod{k}, r+q \leq k \end{cases}$$

$$r+q-k, & nl+l+2i \equiv r \pmod{k}, r+q \leq k \end{cases}$$

$$g(v_{nl+t}S) = \begin{cases} q-1, & nl+l+1 \equiv 0 \; (\bmod \; k) \\ r+q, & nl+l+1 \equiv r \; (\bmod \; k), r+q \leq k \\ \\ r+q-k, & nl+l+1 \equiv r \; (\bmod \; k), r+q > k \end{cases}$$

The following two cases arise when we color the remaining

$$\left\lfloor \frac{t-1}{2} \right\rfloor \operatorname{edges}(v_{nl+\frac{t}{2}+1}, v_{nl+\frac{t}{2}+2}), (v_{nl+\frac{t}{2}+2}, v_{nl+\frac{t}{2}+3}), ..., (v_{nl+t-2}, v_{nl+t-1}), (v_{nl+t-1}, v_{nl+t}) \text{ on the longitude } L_t.$$

case (i): 
$$t$$
 even. For  $1 \le i \le \frac{t}{2} - 1$ ,

$$g\left(v \underset{nl+\frac{t}{2}+i}{v} v \atop 2\right) = \begin{cases} q-1, & nl+l+t-(2i-1) \equiv 0 \pmod{k} \\ \\ r+q, & nl+l+t-(2i-1) \equiv r \pmod{k}, \end{cases}$$

$$r+q \leq k$$

$$r+q-k, & nl+l+t-(2i-1) \equiv r \pmod{k},$$

$$r+q>k$$

case (ii):
$$t$$
 odd. For  $1 \le i \le \left| \begin{array}{c} t \\ 2 \end{array} \right|$ ,

$$g\left(v_{nl+\left\lfloor\frac{t}{2}\right\rfloor+l-nl+\left\lfloor\frac{t}{2}\right\rfloor+(l+1)}\right) = \begin{cases} q-1, \ nl+l+2\left\lfloor\frac{t}{2}\right\rfloor - (2i-1) \equiv 0 \ (\text{mod } k) \\ r+q, nl+l+2\left\lfloor\frac{t}{2}\right\rfloor - (2i-1) \equiv r \ (\text{mod } k), \\ r+q-k, nl+l+2\left\lfloor\frac{t}{2}\right\rfloor - (2i-1) \equiv r \ (\text{mod } k), \\ r+q-k, nl+l+2\left\lfloor\frac{t}{2}\right\rfloor - (2i-1) \equiv r \ (\text{mod } k), \end{cases}$$

where 'q' is the quotient in each case mod k. Thus g'defines a proper edge coloring and is called the second component coloring of the quasi-uniform theta graph. The two component colorings defined by f(E(G)) and g(E(G))for each edge in the quasi-uniform theta graph  $\Theta(s_1, s_2, ..., s_{l-1}, s_l)$  are all distinct and thus give the skew edge coloring of G. The first 'k' edges are assigned the c = 1, 2, 3, ..., k. In colors of the form (c, c), the second set of 'k' edges, the first k-1 edges are assigned the colors of the form (c, c + 1), c = 1, 2, 3, ..., k - 1. The  $k^{th}$  edge is assigned the color (k, 1) as the ordered pair (k, k+1) is not permissible. In the third set of 'k' edges, the first k-2 edges are assigned the colors of the form (c, c +2), c = 1, 2, 3, ..., k - 2. The (k - 1)<sup>th</sup> and the k<sup>th</sup> edge are assigned the colors (k-1, 1) and (k, 2) respectively as the ordered pairs (k-1, k+1) and (k, k+2) are not permissible. Thus the pairs of colors (f, g) assigned to each edge in the quasi-uniform theta graph are all distinct and forms the skew edge coloring of G. See Fig. 4.

Proceeding as in *Theorem* 3.2, an optimal s(G) for quasi-uniform theta graph is obtained as

$$s(G) = \left\lceil \frac{-1 + \sqrt{1 + 8m}}{2} \right\rceil = \left\lceil \frac{-1 + \sqrt{1 + 8[(n+1)l + t]}}{2} \right\rceil.$$

By comparing with the bound on s(G) as discussed in Section II, the skew chromatic index obtained is equivalent to k(|E(G)|) which is an optimal solution for the skew chromatic index of quasi-uniform theta graphs.

International Journal of Computing Algorithm Volume: 06 Issue: 02 December 2017 Page No.59-63

ISSN: 2278-2397

[10] Bharathi Rajan, Indra Rajasingh, P. Venugopal, "Metric dimension of uniform and quasi-uniform theta graphs," J.Comp. & Math. Sci, vol. 2(1), pp.37-46, 2011.



Fig. 4. (a) Quasi-uniform theta graph with l longitudes (b) Odd quasi-uniform with n = 4 and t = 3

# V. CONCLUSION

The skew edge coloring and hence the skew chromatic index of uniform theta and quasi-uniform theta graphs is obtained. Determining the skew chromatic index of other interconnection networks is quite interesting. Finding the skew chromatic index of cyclic snakes is under consideration.

# References

- [1] S.G. Shrinivas, S. Vetrivel, N.M. Elango, "Applications of graph theory in computer Science an overview," International Journal of Engineering Science and Technology, vol.2, No.9, pp.4610-4621, 2010.
- [2] S. Fiorini and R. J. Wilson, Edge-colorings of graphs, Pitman, London, 1977.
- [3] V.G. Vizing, "On an estimate of the chromatic class of a *p*-graph (Russian)" Diskret. Analiz., Vol.3, pp.25-30, 1964.
- [4] I. Holyer, "The *NP*-completeness of edge-coloring," Society for Industrial and Applied Mathematics, vol.10, 718-720, 1981.
- [5] D.R. Stinson, "The spectrum of skew room squares," J. Australi. Math. Soc. (Series A) 31, pp.475-480, 1981.
- [6] M. F. Foregger, "The skew chromatic index of a graph," Discrete Mathematics, vol. 49, pp.27-39, 1984.
- [7] Joice Punitha. M, S. Rajakumari, "Skew chromatic index of comb, ladder and Mobius ladder graphs," International Journal of Pure and Applied Mathematics, vol.101 No.6, pp.1003-1011, 2015.
- [8] Joice Punitha. M, S. Rajakumari, Indra Rajasingh, "Skew chromatic index of circular ladder graphs," Annals of Pure and Applied Mathematics, vol. 8, No. 2, pp. 1-7, 2014.
- [9] J.A. Bondy, U.S.R. Murty, Graph theory with applications, Macmillan, London, 1976.