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Abstract — Let  and  be two simple graphs. Let  ( , 1) 

and ( , 2) be two vertex measure spaces. In this paper we 

introduce a σ algebra 1  2, which consists of all vertex 

induced sub graphs of    , and it contains  every vertex 

measurable rectangle graph of the form H1  H2 ,         H1 ∈ 1 

and   H2 ∈ 2. Here, we prove 1  2   is the smallest σ 

algebra of    such that the maps  and  

 defined by  and   

 for all vertex measurable graphs H in  and 

K in  respectively are measurable. 
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I. INTRODUCTION  

 

The authors [3] introduced the concept of vertex measurable 

graph and proved some results related to this concept. The 

authors [4] introduced a new operation ‘  ’ as in definition 2.4 

and vertex measurable rectangle graph. The concept of 

Cartesian product of two measurable spaces was introduced in 

the field of measure theory. In [2] it has been proved that 1 × 

2 is the smallest σ – algebra of subsets of     such that 

the maps and  defined by 

and  respectively are measurable. In 

this paper we develop the graph analog of these concepts. 

 

II. PRELIMINARIES 

Definition 2.1 

A graph G with p vertices and q edges is called a (p, q) graph, 

where p and q are respectively known as the order and size of 

the graph G.  

 

A (p, q) graph with 0p q  is called an empty graph and is 

denoted by . 

 

Definition 2.2 

Let  be a graph and   be a sub graph 

of G. The vertex complement of H in G is denoted by and 

it is defined as the sub graph obtained from G by deleting all 

the vertices of H. Hereafter, we shall use c
H instead of . 

From the examples below it is evident that  is not equal 

to . So there is a hidden sub graph of  related to H to 

overcome this difficulty, a new union was defined in [3]. 

 

Definition 2.3 

Let  be a graph and for  and    . Let 

 and  be two vertex induced sub graphs of 

. The vertex induced union of and is defined as the 

vertex induced sub graph  and is denoted by .  
 

Definition 2.4 

If  and  are two sub graphs of G then 

.  

 

Definition 2.5 

Let  be a simple graph and let  be a collection of vertex 

induced sub graphs of G together with empty graph  is a field 

if and only if  

 

(i)      

(ii)     for each  

(iii)   , then  and    

                                                           

 
 

Definition 2.6 

Let  and  be two simple graphs. 

The Cartesian product of  and  denoted as  is a 

graph with vertex set  and two vertices , 

 are said to be adjacent if   and v1 is 

adjacent to v2 in  or  and u1 is adjacent to u2 in . 

That is,  where 

 

 

 

Example 2.7 

 

                    u1                             u2 

                                                               

     :                  

                      

                         u4                             u3 
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                       v1                                      v2 

 

                                                               

              

                       v2                                     v3 

 

 

 

          (u1, v1)                (u1, v2)           (u1, v3)             (u1, v4) 

     

 

           (u2, v1)               (u2, v2)           (u2, v3)            (u2, v4)                         

          

           

           (u3, v1)                (u3, v2)           (u3, v3)            (u3, v4)                                            

                                                     
          (u4, v1)               (u4, v2)           (u4, v3)            (u4, v4) 

 

 

Definition 2.8 

Let  be a simple graph. Let  be a  algebra of vertex 

induced sub graphs of , then  is called a vertex measure 

space. 

 

III. VERTEX MEASURABLE RECTANGLE GRAPH 

 

Definition 3.1 

Let  and  be any two simple graphs. Let  and 

 be two vertex measurable spaces. Any graph of the 

form , where and , is called a vertex 

measurable rectangle graph. 

 

Definition 3.2 

Let  and  be any two simple graphs. Let N be any vertex 

induced sub graph of . For each vertex u in , define 

, where  

.  is the vertex induced sub graph from 

the vertex set . Clearly is a sub graph of . Simply it is 

denoted as N
u
. 

 

Similarly for each vertex v in  define , where 

.  is the vertex 

induced sub graph from the vertex set . Clearly  is a sub 

graph of . 

 

Lemma 3.3 

Let  and  be two vertex measure spaces. If 

 is a vertex measurable rectangle graph in , 

then   

Proof: 
 Let  

 Then  where 

 
        

        

  
        

        

               

Hence  if . 

If u is not in V(H), then  

            where 

         

                               

               

             

             

Therefore, , if . 

Hence,  

Similarly we can prove, for ,  

 
 

Lemma 3.4 

If  and  are two vertex measurable rectangle 

graphs in , then 

  

 

Proof:  

For the proof, we claim that  

 and  

. 

Now,  

 
   

   

   

therefore, 

 
Let  where  

        and  

 

                      
 

                      and 

                                                    

 

By the definition of Cartesian product,  

 

 and  or  and    

 and 

 [  and  or  and ] 

 

that implies and implied by 

  

 and  and  and ] 

or 

 and  and  and ] 

or 

 and  and  and ] 

or 

 and  and  and ] 

 

that implies and implied by 

 

 and  ]  

or 
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 and  ] 

that implies and implied by 

 

 and ]  

or 

 and ] 

Hence,  

 
 

Theorem 3.5 

Let  and  be two vertex measure spaces. Let 

 and  be defined by 

 and  for all vertex 

measurable graphs H in  and K in . Then  

(i) The maps  and are measurable.  

[for all  and  ,  and 

] 

(ii) The σ – algebra  is the smallest σ – algebra of 

, such that (i) holds. 

 

Proof: 

Let  and  be two simple graphs. Let  and  

be two vertex measure spaces. Let  and . By 

lemma 3.3, for any vertex measurable graph  in , 

 for all . This follows 

that  and 

 .  

 

Let Ω be any σ – algebra of vertex induced sub graphs of 

 such that  and  are vertex measurable. We have 

to show that . Let  and . By the 

definition of ,  which is 

. Since, , . 

Similarly . By lemma 3.4 

. It 
follows that . Hence  is the smallest σ – 

algebra of vertex measurable graphs of . 

 

References 

[1] Bondy J. A. and U. S. R Murty: Graph Theory with 

Applications. Elsevier, North Holland, 1976. 

[2] Inder K Rana: An Introduction to Measure and Integration, 

Narosa International Publishing 

[3] Suresh Singh. G and Krishnapillai Karunakaran: Vertex 

Measurable Graphs, Graph Theory Notes of New York, 

LV:5, New York Academy of Science, 2008, pp. 33-40. 

[4] Vijayan A, Sanal S: On Cartesian Product of Vertex 

Measurable Graphs, Journal of Discrete Mathematical 

Sciences & Cryptograph Vol. 14 (2012), No.2 &3, pp.193-

210. 

[5] Walter Rudin: Real and Complex Analysis 


