ISSN: 2278-2397

σ – Algebra on Cartesian Product of Vertex Measurable Graphs

S. Sanal, Henah. E. Vatsalya

Department of Information Technology, Ibri College of Technology, Ibri, Sultanate of Oman Email: anfigarden@yahoo.com, evatsalya@gmail.com

Abstract — Let G_1 and G_2 be two simple graphs. Let (G_1, \Im_1) and (G_2, \Im_2) be two vertex measure spaces. In this paper we introduce a σ algebra $\Im_1 \times \Im_2$, which consists of all vertex induced sub graphs of $G_1 \times G_2$, and it contains every vertex measurable rectangle graph of the form $H_1 \times H_2$, $H_1 \in \Im_1$ and $H_2 \in \Im_2$. Here, we prove $\Im_1 \times \Im_2$ is the smallest σ algebra of $G_1 \times G_2$ such that the maps $L_{G_1} \colon G_1 \times G_2 \to G_1$ and $L_{G_2} \colon G_1 \times G_2 \to G_2$ defined by $L_{G_1}(H \times K) = H$ and $L_{G_2}(H \times K) = K$ for all vertex measurable graphs H in G_1 and K in G_2 respectively are measurable.

Keywords — vertex measurable graph, vertex measurable rectangle graph

I. INTRODUCTION

The authors [3] introduced the concept of vertex measurable graph and proved some results related to this concept. The authors [4] introduced a new operation ' \forall ' as in definition 2.4 and vertex measurable rectangle graph. The concept of Cartesian product of two measurable spaces was introduced in the field of measure theory. In [2] it has been proved that $\mathfrak{I}_1 \times \mathfrak{I}_2$ is the smallest σ – algebra of subsets of $X \times Y$ such that the maps $P_x: X \times Y \longrightarrow X$ and $P_y: X \times Y \longrightarrow Y$ defined by $P_x(x,y) = x$ and $P_y(x,y) = y$ respectively are measurable. In this paper we develop the graph analog of these concepts.

II. PRELIMINARIES

Definition 2.1

A graph G with p vertices and q edges is called a (p, q) graph, where p and q are respectively known as the order and size of the graph G.

A (p, q) graph with p = q = 0 is called an empty graph and is denoted by Φ .

Definition 2.2

Let $G = (V_G, E_G)$ be a graph and $H = (V_H, E_H)$ be a sub graph of G. The vertex complement of H in G is denoted by $H_{V_G}^c$ and it is defined as the sub graph obtained from G by deleting all the vertices of H. Hereafter, we shall use H^c instead of $H_{V_G}^c$. From the examples below it is evident that $H \cup H^c$ is not equal to G. So there is a hidden sub graph of G related to G to overcome this difficulty, a new union was defined in [3].

Definition 2.3

Let $G = (V_G, E_G)$ be a graph and for $S_1 \subset V_G$ and $S_2 \subset V_G$. Let $H_1 = \langle S_1 \rangle$ and $H_2 = \langle S_2 \rangle$ be two vertex induced sub graphs of G. The vertex induced union of H_1 and H_2 is defined as the vertex induced sub graph $\langle S_1 \cup S_2 \rangle$ and is denoted by $H_1 \cup H_2$.

Definition 2.4

If $H_1 = \langle S_1 \rangle$ and $H_2 = \langle S_2 \rangle$ are two sub graphs of G then $H_1 \vee H_2 = \langle S_1 - S_2 \rangle$.

Definition 2.5

Let G be a simple graph and let \mathfrak{I} be a collection of vertex induced sub graphs of G together with empty graph Φ is a field if and only if

- (i) $G \in \mathfrak{J}$
- (ii) $H^c \in \mathfrak{I}$ for each $H \in \mathfrak{I}$
- (iii) $H_1, H_2, \dots \in \mathfrak{J}$, then $\bigcup H_i \in \mathfrak{J}$ and $\bigcap H_i \in \mathfrak{J}$

Definition 2.6

Let $G_1 = (V_{G_1}, E_{G_1})$ and $G_2 = (V_{G_2}, E_{G_2})$ be two simple graphs. The Cartesian product of G_1 and G_2 denoted as $G_1 \times G_2$ is a graph with vertex set $V_{G_1} \times V_{G_2}$ and two vertices $u = (u_1, v_1)$, $v = (u_2, v_2)$ are said to be adjacent if $u_1 = u_2$ and v_1 is adjacent to v_2 in G_2 or $v_1 = v_2$ and u_1 is adjacent to u_2 in G_1 . That is, $G_1 \times G_2 = (V_{G_1} \times V_{G_2}, E_{G_1 \times G_2})$ where $E_{G_1 \times G_2} = \{ uv / u_1 = u_2 \text{ and } v_1 v_2 \in E_{G_2} \text{ or } v_1 = v_2 \text{ and } u_1 u_2 \in E_{G_1} \}$

Example 2.7

International Journal of Computing Algorithm Volume: 06 Issue: 01 June 2017 Page No.48-50

$$v_1$$
 v_2 v_2 v_3

Definition 2.8

Let G be a simple graph. Let \Im be a σ – algebra of vertex induced sub graphs of G, then (G,\Im) is called a vertex measure space.

III. VERTEX MEASURABLE RECTANGLE GRAPH

Definition 3.1

Let G_1 and G_2 be any two simple graphs. Let (G_1, \mathfrak{I}_1) and (G_2, \mathfrak{I}_2) be two vertex measurable spaces. Any graph of the form $H_1 \times H_2$, where $H_1 \in \mathfrak{I}_1$ and $H_2 \in \mathfrak{I}_2$, is called a vertex measurable rectangle graph.

Definition 3.2

Let G_1 and G_2 be any two simple graphs. Let N be any vertex induced sub graph of $G_1 \times G_2$. For each vertex u in G_1 , define $N_{G_1}^u = (V_{G_1}^u)$, where $V_{G_1}^u = \{v_i/v_i \in V(G_2) \text{ and } (u,v_i) \in V(N)\}$. $(V_{G_1}^u)$ is the vertex induced sub graph from the vertex set $V_{G_1}^u$. Clearly $N_{G_1}^u$ is a sub graph of G_2 . Simply it is denoted as N^u .

Similarly for each vertex v in G_2 define $V_{G_2}^v = (V_{G_2}^v)$, where $V_{G_2}^v = \{u_i/u_i \in V(G_1) \text{ and } (u_i,v) \in V(N)\}$. $(V_{G_2}^v)$ is the vertex induced sub graph from the vertex set $V_{G_2}^v$. Clearly $N_{G_2}^v$ is a sub graph of G_1 .

Lemma 3.3

Let (G_1, \mathfrak{I}_1) and (G_2, \mathfrak{I}_2) be two vertex measure spaces. If $N = H \times K$ is a vertex measurable rectangle graph in $\mathfrak{I}_1 \times \mathfrak{I}_2$, then $N^{\mathfrak{u}} = \begin{cases} K \text{ if } u \in V(H) \\ \varphi \text{ if } u \notin V(H) \end{cases}$

Proof:

Let
$$u \in V(H)$$

Then $N^u = \langle V^u \rangle$ where
$$V^u = \{v_i / v_i \in V(G_2) \text{ and } (u, v_i) \in V(N)\}$$

$$= \{v_i / v_i \in V(G_2) \text{ and } (u, v_i) \in V(H \times K)\}$$

$$= \{v_i / v_i \in V(G_2) \text{ and } u \in V(H) \text{ and } (u, v_i) \in V(H \times K)\}$$

$$= \{v_i / v_i \in V(H \times K)\}$$

$$= \{v_i / v_i \in V(K)\}$$

$$= V(K)$$

$$N^{u} = \langle V(K) \rangle = K$$
Hence $N^{u} = K$ if $u \in V(H)$.

If u is not in $V(H)$, then
$$N^{u} = \langle V^{u} \rangle \text{ where}$$

$$V^{u} = \{v_{i}/v_{i} \in V(G_{2}) \text{ such that } (u, v_{i}) \in V(N)\}$$

$$= \{v_{i}/v_{i} \in V(G_{2}) \text{ and } u \notin V(H)$$

$$\text{and } (u, v_{i}) \in V(N)\}$$

$$= \{v_{i}/u \notin V(H) \text{ and } (u, v_{i}) \in V(H \times K)\}$$

$$= \Phi$$

Therefore, $N^{u} = \Phi$, if $u \notin V(H)$. Hence, $N^{u} = \begin{cases} K \text{ if } u \in V(H) \\ \Phi \text{ if } u \notin V(H) \end{cases}$ Similarly we can prove, for $v \in V(K)$, $N^{v} = \begin{cases} H \text{ if } v \in V(K) \\ \Phi \text{ if } v \notin V(K) \end{cases}$

Lemma 3.4

If $H_1 \times K_1$ and $H_2 \times K_2$ are two vertex measurable rectangle graphs in $\mathfrak{I}_1 \times \mathfrak{I}_2$, then $(H_1 \times K_1) \cap (H_2 \times K_2) = (H_1 \cap H_2) \times (K_1 \cap K_2)$

Proof:

For the proof, we claim that

$$\begin{split} V((H_1 \times K_1) \cap (H_2 \times K_2)) &= V((H_1 \cap H_2) \times (K_1 \cap K_2)) \text{ and } \\ E((H_1 \times K_1) \cap (H_2 \times K_2)) &= E((H_1 \cap H_2) \times (K_1 \cap K_2)). \\ \text{Now, } V((H_1 \times K_1) \cap ((H_2 \times K_2))) \\ &= (V(H_1 \times K_1)) \cap V((H_2 \times K_2)) \\ &= (V(H_1) \times V(K_1)) \cap (V(H_2) \times V(K_2)) \\ &= (V(H_1) \cap V(H_2)) \times (V(K_1) \cap V(K_2)) \end{split}$$

therefore,

$$V((H_1 \times K_1) \cap ((H_2 \times K_2)) = V(H_1 \cap H_2) \times V(K_1 \cap K_2)$$
Let $e = uv \in E((H_1 \times K_1) \cap ((H_2 \times K_2)))$ where $u = (u_1, v_1)$
and $v = (u_2, v_2)$

 $=V(H_1\cap H_2)\times V(K_1\cap K_2)$

$$\begin{split} &\Leftrightarrow (u_1,v_1)(u_2,v_2) \in E(H_1 \times K_1) \cap E(H_2 \times K_2) \\ &\Leftrightarrow (u_1,v_1)(u_2,v_2) \in E(H_1 \times K_1) \text{ and} \\ &\qquad \qquad (u_1,v_1)(u_2,v_2) \in E(H_2 \times K_2) \end{split}$$

By the definition of Cartesian product,

$$\begin{aligned} &[u_1 = u_2 \text{ and } v_1 v_2 \in E(K_1) \text{ or } v_1 = v_2 \text{ and } u_1 u_2 \in E(H_1)] \\ &\text{and} \\ &[u_1 = u_2 \text{ and } v_1 v_2 \in E(K_2) \text{ or } v_1 = v_2 \text{ and } u_1 u_2 \in E(H_2)] \end{aligned}$$

that implies and implied by

$$\begin{aligned} [u_1 &= u_2 \text{ and } v_1v_2 \in E(K_1) \text{ and } u_1 = u_2 \text{ and } v_1v_2 \in E(K_2)] \\ \text{or} \\ [u_1 &= u_2 \text{ and } v_1v_2 \in E(K_1) \text{ and } v_1 = v_2 \text{ and } u_1u_2 \in E(H_2)] \\ \text{or} \\ [v_1 &= v_2 \text{ and } u_1u_2 \in E(H_1) \text{ and } u_1 = u_2 \text{ and } v_1v_2 \in E(K_2)] \\ \text{or} \\ [v_1 &= v_2 \text{ and } u_1u_2 \in E(H_1) \text{ and } v_1 = v_2 \text{ and } u_1u_2 \in E(H_2)] \end{aligned}$$

that implies and implied by

$$[u_1 = u_2 \text{ and } v_1 v_2 \in E(K_1) \cap E(K_2)]$$

or

International Journal of Computing Algorithm Volume: 06 Issue: 01 June 2017 Page No.48-50

ISSN: 2278-2397

 $[v_1 = v_2 \text{ and } u_1 u_2 \in E(H_1) \cap E(H_2)]$ that implies and implied by

$$\begin{aligned} [u_1 &= u_2 \text{ and } v_1 v_2 \in E(K_1 \cap K_2)] \\ \text{or} \\ [v_1 &= v_2 \text{ and } u_1 u_2 \in E(H_1 \cap H_2)] \\ \text{Hence,} \\ E((H_1 \times K_1) \cap (H_2 \times K_2)) &= E((H_1 \cap H_2) \times (K_1 \cap K_2)) \end{aligned}$$

Theorem 3.5

Let (G_1, \mathfrak{J}_1) and (G_2, \mathfrak{J}_2) be two vertex measure spaces. Let $L_{G_1}: G_1 \times G_2 \to G_1$ and $L_{G_2}: G_1 \times G_2 \to G_2$ be defined by $L_{G_1}(H \times K) = H$ and $L_{G_2}(H \times K) = K$ for all vertex measurable graphs H in G_1 and K in G_2 . Then

- (i) The maps L_{G_1} and L_{G_2} are measurable. [for all $H \in \mathfrak{I}_1$ and $K \in \mathfrak{I}_2$, $L_{G_1}^{-1}(H) \in \mathfrak{I}_1 \times \mathfrak{I}_2$ and $L_{G_2}^{-1}(K) \in \mathfrak{I}_1 \times \mathfrak{I}_2$]
- (ii) The σ algebra $\mathfrak{I}_1 \times \mathfrak{I}_2$ is the smallest σ algebra of $G_1 \times G_2$, such that (i) holds.

Proof:

Let G_1 and G_2 be two simple graphs. Let (G_1, \mathfrak{I}_1) and (G_2, \mathfrak{I}_2) be two vertex measure spaces. Let $H \in \mathfrak{I}_1$ and $K \in \mathfrak{I}_2$. By lemma 3.3, for any vertex measurable graph $H \times K$ in $\mathfrak{I}_1 \times \mathfrak{I}_2$, $(H \times K)^u = \begin{cases} K \text{ if } u \in V(H) \\ \varphi \text{ if } u \notin V(H) \end{cases}$ for all $u \in V(H)$. This follows that $L_{G_1}^{-1}(H) \in \mathfrak{I}_1 \times \mathfrak{I}_2$ and $L_{G_2}^{-1}(K) \in \mathfrak{I}_1 \times \mathfrak{I}_2$.

Let Ω be any σ – algebra of vertex induced sub graphs of $G_1 \times G_2$ such that L_{G_1} and L_{G_2} are vertex measurable. We have to show that $\Omega \subseteq \mathfrak{I}_1 \times \mathfrak{I}_2$. Let $H \in \mathfrak{I}_1$ and $K \in \mathfrak{I}_2$. By the definition of L_{G_1} , $L_{G_1}(H \times G_2) = H$ which is $H \times G_2 = L_{G_1}^{-1}(H)$. Since, $H \times G_2 \in \Omega$, $L_{G_1}^{-1}(H) \in \Omega$. Similarly $L_{G_2}^{-1}(K) \in \Omega$. By lemma 3.4 $H \times K = (H \cap G_1) \times (K \cap G_2) = (H \times G_2) \cap (G_1 \times K)$. It follows that $\mathfrak{I}_1 \times \mathfrak{I}_2 \subseteq \Omega$. Hence $\mathfrak{I}_1 \times \mathfrak{I}_2$ is the smallest σ – algebra of vertex measurable graphs of $G_1 \times G_2$.

References

- [1] Bondy J. A. and U. S. R Murty: Graph Theory with Applications. Elsevier, North Holland, 1976.
- [2] Inder K Rana: An Introduction to Measure and Integration, Narosa International Publishing
- [3] Suresh Singh. G and Krishnapillai Karunakaran: Vertex Measurable Graphs, Graph Theory Notes of New York, LV:5, New York Academy of Science, 2008, pp. 33-40.
- [4] Vijayan A, Sanal S: On Cartesian Product of Vertex Measurable Graphs, Journal of Discrete Mathematical Sciences & Cryptograph Vol. 14 (2012), No.2 &3, pp.193-210.
- [5] Walter Rudin: Real and Complex Analysis