The Minimum Mean Dominating Energy of Graphs

M.V.Chakradhararao¹, B.Satyanarayana², K.A.Venkatesh³

¹Assistant Professor in Mathematics, School of Engineering, Presidency University, Bangalore ²Assistant Professor, Department of Mathematics, Acharya Nagarjuna University, Guntur ³Professor in Mathematics and Comp. Science, School of Engineering, Presidency University, Bangalore E-mail: chakrimv@yahoo.com, drbsn63@yahoo.co.in, prof.kavenkatesh@gmail.com

Abstract: The energy of a graph was introduced by I.Gutman [4] and its bound were obtained by .Balakrishnan [9].Subsequently the Minimum Dominating Energy was introduced by [8] R.Rajeshkanna. Then Mean Energy (M energy) was introduced by LauraBuggy, Amaliailiuc, KatelynMccall, and Duyguyen [7]. In this paper, we studied the Mean Domination Energy for some standard graphs and obtained its bounds.

Keywords—Energy of a graph, dominating energy, mean dominating energy

INTRODUCTION

The concept of energy of a graph was introduced by I.Gutman [4] in the year 1978, throughout this paper G will denote a simple undirected graph with n vertices. For details, refer the book [1] A subset S of the vertex set V (G) is called Dominating set, if every vertex not in S (every vertex in (V-S)) is adjacent to at least one member of S. The minimal cardinality of such set S is called as Minimum dominating set of G. Let D be the minimum dominating set for a graph G = (V, E), then the minimum dominating matrix of G is a $n \times n$ matrix

$$\mathbb{A}_{\mathbb{D}(\mathbb{G})} = \left\{ \begin{array}{ll} 1 & \text{ if } < v_i, v_j > \in \ \mathbb{E} \\ 1 & \text{ if } \ \mathbf{i} = \mathbf{j}, v_j \in \mathbb{D} \\ 0 & \text{ otherwise} \end{array} \right.$$

Then Eigen values of $A_D(G)$ are positive real and symmetric.

Minimum Dominating Energy (MDE):

The minimum dominating energy [8] of graph is given by the sum of absolute values of Eigen values of the minimum dominating matrix.

Minimum Mean Dominating Energy (MMDE): The mean dominating energy of G is defined as $E_D^M(G) =$ $\sum_{i=1}^{n} |\mu_i - \bar{\mu}|$, where $\bar{\mu}$ is the average of the Eigen values $\mu_1, \mu_2, ..., \mu_n$ of the minimum dominating matrix.

Complete Graph: A graph K_n is complete if every pair of vertices are connected by an edge.

Star Graph: A star graph $K_{1,n-1}$ of order n is a tree on n nodes with one node is having vertex degree (n-1) and all the other (n-1) nodes having vertex degree 1.

Cocktail graph: A cocktail graph [1] S_k is the graph on k =2p vertices u_i , i = 1,2,3,...,k with u_i is non-adjacent to u_{i+p} , for each i=1,2,...,p. All of the other pairs of vertices are adjacent. Note that this is a (k-2) regular graph.

Crown graph: The crown graph $S_n^0 = (V, E)$, for integer $n \ge 2$, is the graph generated from complete bipartite graph by removing perfect matching.

For the fundamental concepts, definitions and earlier results, refer [1, 2, 3, 5, 6].

II. THE MINIMUM MEAN DOMINATING ENERGY OF SOME STANDARD GRAPHS

Theorem1: For Complete Graph k_n the Minimum Mean Dominating Energy is

$$\frac{(n-2)(n+1)}{n} + \sqrt{n^2 - 2n + 5} \cdot (n \ge 2)$$

Proof: K_n is Complete graph on n-vertices, the vertex set is given by $V = \{v_1, v_2, ..., v_n\}$.

The minimum dominating set is a singleton set, let us assume that $D = \{v_1\}$. Then the minimum dominating matrix

$$\mathbf{A}_{D}(k_{n}) = \begin{pmatrix} 1 & 1 & 1 & & 1 & 1 \\ 1 & 0 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 0 & & 1 & 1 \\ \vdots & & \ddots & & \vdots \\ 1 & 1 & 1 & \cdots & 1 & 0 \end{pmatrix}_{n \times n}$$

The characteristic polynomial is

 $|\mathbf{A}_{\mathbf{D}}(\mathbf{K}_n) - \boldsymbol{\mu} \mathbf{I}| = 0$ and computed as:

$$(\mu + 1)^{n-2}(\mu^2 - (n-1)\mu - 1) = 0.$$

The Eigen values are: one is of multiplicity (n-2) and other two

$$\mu = -1 & \mu = \frac{(n-1) \pm \sqrt{n^2 - 2n + 5}}{2}.$$
And hence the Mean $\bar{\mu} = \frac{1}{n}$.

Minimum Dominating Energy is

$$E_D(k_n) = |-1| (n-2) + |\frac{(n-1) \pm \sqrt{n^2 - 2n + 5}}{2}|$$

$$= (n-2) + \sqrt{n^2 - 2n + 5}.$$

Minimum Mean Dominating Energy is computed as

$$E_D^M(k_n) = \sum_{i=1}^{n-2} |-1 - \frac{1}{n}| + \frac{(n-1) \pm \sqrt{n^2 - 2n + 5}}{2} - \frac{1}{n}|$$

$$= \frac{(n-2)(n+1)}{n} + |\frac{n(n-1) \pm n\sqrt{n^2 - 2n + 5} - 2}{2n}|$$

$$= \frac{(n-2)(n+1)}{n} + |\frac{(n^2 - n - 2) \pm n\sqrt{n^2 - 2n + 5}}{2n}|$$

$$= \frac{(n-2)(n+1)}{n} + \sqrt{n^2 - 2n + 5} \blacksquare$$

Theorem 2: For Star Graph $k_{\mathtt{1},n-\mathtt{1}}$ the Minimum Mean Dominating Energy is

$$\frac{(n-2)}{n} + \sqrt{4n-3} \cdot (n \ge 2)$$

Proof: $k_{1,n-1}$ is Star Graph which is a bipartite graph with vertex set $V = \{v_1, v_2, ..., v_n\}$. Let us take v_i be the vertex in the one set and remaining (n-1) vertices are in the other set. Hence, the minimum dominating set is $D = \{v_1\}$.

Then the minimum dominating matrix

$$\mathbf{A}_{D}(k_{1.n-1}) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 0 & & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 1 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}_{n \times n}$$

Then the characteristic polynomial is given by

$$|A_n(k_1, -1)| - \mu I = 0$$
 is $\mu^{n-2}(\mu^2 - \mu - (n-1)) = 0$.

Then Eigen values are $\mu = 0$ is of multiplicity (n-2) and the other two are simple roots $\mu = \frac{1 \pm \sqrt{4n-3}}{2}$. and hence

Mean $\bar{\mu} = \frac{1}{2}$.

Minimum Dominating Energy is computed as

$$E_D(k_{1,n-1}) = \sum_{i=1}^{n-2} |0| (n-2) + |\frac{1 \pm \sqrt{4n-3}}{2}| = \sqrt{4n-3}.$$

Minimum Mean Dominating Energy is computed as:

Minimum Mean Dominating Energy is computed as:
$$E_D^M(k_{1,n-1}) = \sum_{i=1}^{n-2} |0 - \frac{1}{n}| + \left| \frac{1 \pm \sqrt{4n-3}}{2} - \frac{1}{n} \right| + \left| \frac{2n-3 \pm \sqrt{4n^2-4n+9}}{2} - \frac{1}{n} \right|$$

International Journal of Computing Algorithm Volume: 06 Issue: 01 June 2017 Page No.23-26

ISSN: 2278-2397

$$= \frac{(n-2)}{n} + |\frac{(n-2) \pm n\sqrt{4n-3}}{2n}|$$

$$=\frac{(n-2)}{n}+\sqrt{4n-3} \blacksquare$$

Theorem 3: For Cocktail Party Graph S_k the Minimum Mean Dominating Energy is

$$\frac{4n^2-4n-7}{2n} + \sqrt{4n^2-4n+9}.$$

Let S_k be the Cocktail party graph with vertex set $V = \bigcup_{i=1}^n \{u_i, v_i\}$

The minimum dominating set is $D = \{ u_1, v_1 \}$

Then the minimum dominating matrix $\mathbf{A}_{\mathbf{D}}(S_k)$

Then the characteristic polynomial is given by

$$|\mathbf{A}_{\mathbf{D}}(S_k) - \boldsymbol{\mu} \mathbf{I}| = \mathbf{0}$$

$$\mu^{n-1} (\mu - 1)(\mu + 2)^{n-2} (\mu^2 - (2n-3)\mu - 2n) = 0$$

The Eigen values are $\mu = 0$ is a root of multiplicity (n-1), $\mu = 1$ (is a simple root), $\mu = -2$, is a root of multiplicity simple

roots
$$\mu = \frac{(2n-3)\pm\sqrt{4n^2-4n+9}}{2}$$

and hence Mean $\bar{\mu} = \frac{1}{2}$

Minimum Dominating Energy is computed as:

$$E_{D}(k_{n\times2}) = |0|(n-1)+1+|-2|(n-2)+|$$

$$\frac{2n-3\pm\sqrt{4n^2-4n+9}}{2}$$

$$= (2n-3)+\sqrt{4n^2-4n+9}$$

Minimum Mean Dominating Energy is computed as:

$$E_D^M(k_{n\times 2}) = \sum_{i=1}^{n-1} \left| 0 - \frac{1}{n} \right| + \left| 1 - \frac{1}{n} \right| + \sum_{i=1}^{n-2} \left| -2 - \frac{1}{n} \right| + \left| \frac{2n - 3 \pm \sqrt{4n^2 - 4n + 9}}{2} - \frac{1}{n} \right|$$

International Journal of Computing Algorithm Volume: 06 Issue: 01 June 2017 Page No.23-26

ISSN: 2278-2397

$$= \frac{(n-1)}{n} + \frac{(n-1)}{n} + \frac{(n-2)(2n+1)}{n} + \frac{(2n^2 - 3n - 2) \pm n\sqrt{4n^2 - 4n + 9}}{2n} + \frac{(2n^2 - 3n - 2) \pm n\sqrt{4n^2 - 4n + 9}}{2n}$$

$$= \frac{2n^2 - n - 4}{n} + \sqrt{4n^2 - 4n + 9} \blacksquare$$

Theorem 4: For Crown Graph S_n^0 ($n \ge 2$) the Minimum Mean Dominating Energy is

$$2(n-2) + \sqrt{n^2 - 2n + 5} + \sqrt{n^2 + 2n - 3}$$

Proof: Let S_n^0 be the Crown Graph with vertex set $V = \{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\}$.

Then minimum dominating set is $D = \{ u_1, v_1 \}$

Then the minimum dominating matrix $\mathbf{A}_{\mathbf{D}}(s_n^0)$

The characteristic polynomial $| A_D(s_n^0) - \mu I | = 0$ is $(\mu - 1)^{n-2} (\mu + 1)^{n-2} (\mu^2 - (n-1)\mu - 1) (\mu^2 + (n-2)\mu - (2n-3)) = 0$

Then Eigen values are $\mu = 1$ of multiplicity (n-2), $\mu = -1$ of multiplicity (n-2), and simple roots

$$\mu = \frac{(n-1)\pm\sqrt{n^2-2n+5}}{2},$$

$$\mu = \frac{(3-n)\pm\sqrt{n^2+2n-3}}{2}$$

$$\text{Mean } \bar{\mu} = \frac{1}{n}.$$

Minimum Dominating Energy is computed as

$$E_{D}(S_{n}^{0}) = |1|(n-2) + |-1|(n-2) + |$$

$$\frac{(n-1)\pm\sqrt{n^{2}-2n+5}}{2}|+|\frac{(3-n)\pm\sqrt{n^{2}+2n-3}}{2}$$

$$= 2(n-2) + \sqrt{n^{2}-2n+5} + \sqrt{n^{2}+2n-3}.$$

Minimum Mean Dominating Energy is computed as

$$\begin{split} E_D^M(S_n^0) &= \sum_{i=1}^{n-2} \left| \left(1 - \frac{1}{n}\right) \right| + \sum_{i=1}^{n-2} \left| -1 - \frac{1}{n} \right| + \\ & \left| \frac{(n-1) \pm \sqrt{n^2 - 2n + 5}}{2} - \frac{1}{n} \right| \\ &= \frac{(n-1)(n-2)}{n} + \frac{(n+1)(n-2)}{n} + \left| \frac{(n^2 - n - 2) \pm n\sqrt{n^2 - 2n + 5}}{2n} \right| \\ &= \frac{(n-1)(n-2)}{n} + \frac{(n+1)(n-2)}{n} + \\ &= \frac{(n-1)(n-2)}{n} + \frac{(n+1)(n-2)}{n} + \\ &= \frac{(n-1)(n-2)}{n} + \frac{(n+1)(n-2)}{n} + \\ &= \frac{(n-1)(n-2) + (n+1)(n-2)}{n} + \\ &= 2(n-2) + \sqrt{n^2 - 2n + 5} + \sqrt{n^2 + 2n - 3} \end{split}$$

III. BOUNDS OF MINIMUM MEAN DOMINATING ENERGY

Result 1 [8]: Let G be a simple graph with vertex set $V = \{v_1, v_2, ..., v_n\}$, edge set E and $D = \{v_1, v_2, ..., v_k\}$ be a minimum dominating set. If $\mu_1, \mu_2, ..., \mu_n$ are the Eigen values of minimum dominating matrix $A_D(G)$ then

(i)
$$\sum_{i=1}^{n} \mu_i = |D|$$

(ii) $\sum_{i=1}^{n} \mu_i^2 = 2|E| + |D|$.

Result 2[8]: *Let* G be a simple graph with n vertices and m edges. If D is the minimum dominating set and $P = |\det A_D(G)|$ then

$$\sqrt{(2m+k) + n(n-1)P^{2/n}} \le E_D(G) \le \sqrt{n(2m+k)}$$

International Journal of Computing Algorithm Volume: 06 Issue: 01 June 2017 Page No.23-26

ISSN: 2278-2397

Theorem 5: Let G be a simple graph with n vertices and m edges. If D is the minimum dominating set then

$$\sqrt{(k+2m)-2|\bar{\mu}|\sqrt{n(2m+k)}} \leq E_D^M(G)$$

$$\leq \sqrt{n((k+2m)+n\bar{\mu}^2)}.$$
Proof:

By Cauchy Schwarz inequality

$$(\sum_{i=1}^{n} |a_i b_i|)^2 = (\sum_{i=1}^{n} a_i^2) (\sum_{i=1}^{n} b_i^2)$$

Take
$$\mathbf{a}_i = 1, \mathbf{b}_i = |\mathbf{\mu}_i - \bar{\mathbf{\mu}}|$$
 then,

$$\begin{aligned} [E_D^M(G)]^2 &= (\sum_{i=1}^n 1) \ (\sum_{i=1}^n |\mu_i - \bar{\mu}|^2) \\ &= (n) \ (\sum_{i=1}^n |\mu_i - \bar{\mu}|^2) \\ &\leq n \ (\sum_{i=1}^n {\mu_i}^2 + \sum_{i=1}^n \bar{\mu}^2) \\ &= n \ (\sum_{i=1}^n {\mu_i}^2 + n \ \bar{\mu}^2) \\ &\leq n \ ((2m+k) + n \ \bar{\mu}^2) \end{aligned}$$

Then
$$E_D^M(G) \leq \sqrt{n((k+2m)+n\bar{\mu}^2)}$$

Also
$$[E_D^M(G)]^2 = (\sum_{i=1}^n |\mu_i - \bar{\mu}|)^2$$

$$\geq \sum_{i=1}^n |\mu_i - \bar{\mu}|^2$$

$$\geq \sum_{i=1}^n |\mu_i|^2 - 2|\bar{\mu}| \sum_{i=1}^n |\mu_i|$$

$$\geq (k+2m) - 2|\bar{\mu}|$$

$$\sqrt{n(k+2m)}$$

Then

$$E_D^M(G) \ge \sqrt{(k+2m) - 2 |\bar{\mu}| \sqrt{n(k+2m)}}$$

Hence the theorem ■

References

- [1] Algebraic Graph Theory, 2nd Edition, Norman Biggs, 2001, Cambridge University press.
- [2] D.Cvetkovi'c, I.Gutman (Eds.), Applications of Graph Spectra, Mathematical institution, Belgrade (2009)
- [3] D. Cvetkovi'c, I. Gutman (Eds.), Selected Topics on Applications of Graphs
- [4] I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz.Graz, 103 (1978), 1–22.
- [5] I. Gutman, X. Li, J. Zhang, Graph Energy (Ed-s:M. DehmerF.Em-mert), Streib. Analysis of Complex Networks, From Biology to Linguistics, Wiley-VCH, Weinheim (2009), 145–174.
- [6] I. Gutman, The energy of a graph: Old and new results(Ed-s:A.Bet-ten,A.Kohnert,R.Laue,A.

Springer, Berlin (2001), 196–211.
[7] LauraBuggy, Amaliailiuc, KatelynMccall, Duyguyen,The Energy of graphs and Matrices (1–27) Lecture notes.

Wassermann), Algebraic Combinatorics and Applications,

- [8] R.RajeshKanna, B.N.Dharmendra, G.Sridgara, International Journal of Pure and Applied Mathematics, Vol 85, No.4,2013707–718.
- [9] R.Balakrishnan, The Energy of a graph, Linear Algebra and its Applications, 387(2004), 287-295.