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I. INTRODUCTION 

 

Computing powers of square matrices is needed in many areas 

such as economics, statistics and bioinformatics. So far, the 

existing matrix power algorithms require computationally 

taxable approaches, many of which require eigenvalues. Thus, 

it can be tedious and expensive processes. Furthermore many 

others require distinct number of eigenvectors. For many 

matrices, this fails.An Iterative algorithm has been recently 

proposed by Abu-Saris and Ahmed [4]. This approach 

bypasses the eigenvalue computations. Hence, it also does not 

care whether a matrix has distinct eigenvectors. The particular 

algorithm makes use of an iterative approach in computing the 

coefficient of a remainder polynomial emerging from a 

division algorithm. Even though their approach does not 

require eigenvalue computations, due to its iterative nature, the 

process can be computationally taxing. The distinguishing 

feature of these algorithms however is that the computation of 

A
k   

(k>n ) does not depend upon the computation of the powers 

( >n ) of the nxn matrix A contrary to the existing methods that 

are integrating the classical matrix multiplication algorithms 

such as Winograd  and Strassen algorithms [1-3]. In this paper, 

a simpler algorithm for computing any positive integer power k 

( > n) of nxn matrices is described based upon the ideas 

developed by Abu-Saris and Ahmed as well as others [4-5]. 

The characteristic of our algorithm is that not only the 

computation of A
 k

 does not depend upon the computation of 

the powers ( > n), it also does not require expensive iterative 

processes. We furthermore provide the comparison on the 

theoretical complexity of the algorithms between the three 

different approaches, and the runtime comparison of the 

iterative algorithm and the new algorithm (NewAlg). We 

provide the number of multiplications used in each algorithms 

as the measure of their complexity. 

 

II. PRELIMINARIES 

 

2.1  Matrix Multiplication Algorithms 

Matrix multiplication algorithms are used in many matrix 

power computations. There are various approaches to matrix 

multiplication. One of which is the Winograd algorithm as well 

as the Naïve algorithm [1-3]. 

2.1.1  Naive Algorithm 

The naive algorithm is solely based on the basic mathematical 

definition for the multiplication of two matrices. To compute 

each entry in the final n×n matrix, we need exactly n 

multiplications and n - 1 additions. Since each of the n
2
 entries 

in the first matrix is multiplied by exactly n entries from the 

second matrix, the total number of multiplications is n×n
2 

= n
3
, 

and the total number of additions is (n - 1) · n
2
 = n

3 
- n

2
. Thus, 

we classify the naive algorithm as an O(n
3
) algorithm.  

Applying the Naive algorithm to the m
th

 power of an nxn mat 

          . 

 

2.1.2   Winograd Algorithm 

Winograd algorithm trades multiplications for additions, much 

like Strassen’s method [1-2]. However, it is asymptotically the 

same as the naive algorithm. Instead of multiplying individual 

numbers as in the naive algorithm, Winograd algorithm uses 

pairwise multiplication of the couples of entries and then 

subtracts the accumulated error. That is, for an nxn matrices, 

C=AB,   
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Since Ai and Bj are precomputed only once for each row and 

column, they require only n
2
 multiplications [3]. The final 

summation does require O(n
3
) multiplications, but only half of 

those in the naive algorithm. Thus, the total number of 

multiplications is reduced to 1⁄2 n
3
 + n

2
. For the m

th
 power 

computation then Winograd algorithm requires at most total 

multiplications:  

     (    ⁄     ) 

2.2   Iterative Algorithm 

Cayley Hamilton theorem coupled with the Division Algorithm 

is an essential component of the ideas used in the iterative 

algorithm by Abu-Saris and Ahmed as well as Elaydi and 

Harris [4-5].  

Cayley Hamilton Thm: 

 Let A ∈ M(n, n) with the characteristic polynomial  

                     p(x)=                          

   
                 

Then,  

                      p(A)=               
             

       

Division Algorithm:  

Let g(x), and p(x) be the real-valued polynomials of degrees m 

≥ n respectively. Then,  

 

                                                                            (1) 

 

In the recursive algorithm, Abu-Saris and Ahmed uses 

specifically the polynomials, g(x)=x
m
 

 
and p(x) as the 

characteristic polynomial of an nxn matrix A applied to (1) 

along with the Cayley Hamilton theorem [4].  
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Outline of the iterative algorithm:  

Consider an nxn real-valued matrix A (               

                         ∑    
    

     
                                       

Then,   

                               ,  

Next, by the Cayley Hamilton Thm:  

 

        = ∑           
     

                                                 (2) 

 

These ideas result in the following iterative algorithm for the 

evaluation of the coefficients bj(m) in (2): 

 

                                (        

             )                                                                    (3) 

 

The iteration in (3) uses one multiplication per coefficient, 

totaling n multiplications for a single power. Hence, for the m
th

 

power of an nxn matrix A, the number of multiplications 

carried out by (3) is: 

 

(m-n).n+(n-2)(1/2n
3
+n

2
)+(n-1)n

2                                               
(4) 

 

Matrix polynomial in (2) requires the computation of the (n-

1)
th

  power of A. (3) provides the coefficients of the matrix 

polynomial for the powers <n. In (4), we consider the 

Winograd algorithm to calculate the number of multiplications 

used in matrix multiplications. Note that there is no need to 

repeat the matrix multiplication for each power in (2). Thus, 

only the number of multiplications used in the evaluation of the 

(n-1)
th

 power of A. Then, the total number of multiplications 

used is: (n-2)(1/2n
3
+n

2
). Finally, (2) uses at most (n-1) n

2
 

scalar matrix multiplications. 

 

III. DEVELOPMENT OF THE NEW ALGORITHM 

(NEWALG) 

 

Our algorithm expends the ideas from Abu-Saris and Ahmad 

[4]. Rather than applying the long division ideas resulting in 

the iteration (3), our algorithm applies vector space tools, in 

turn, solves a linear system for the coefficients of the 

remainder polynomial associated with the matrix  power to be 

computed. 

 

Given a characteristic polynomial, F(x)=∑    
  

   , of a nxn 

matrix A.  Consider the real vector space of the polynomials of 

degree m (>n), and let’s consider its basis {1, x, x
2
, …,x

n-1
, F, 

xF, x
2
F,…,x

m-n
F }  Then,  for any polynomial of degree m, 

G(x)=∑    
  

   , we obtain :  

 

G(x)=∑    
    

   =∑    
     

   +∑    
       

                                 (5) 

 

Note that (5) is equivalent to the division algorithm      

              where r(x)= ∑    
     

   . The difference 

between the two ideas is that (5) does not require expensive 

iterative steps.  In fact, it needs only basic matrix algebra 

approaches to solving the linear system: 

 

∑                                         
           (6) 

Thus, the system (6) is represented by an (m-n+1)x(m-n+2) 

coefficient matrix that has a structure very similar to that of the 

Toeplitz Matrices.  
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Solving (6) can be achieved via the basic back substitution 

process or via the row reduced echelon form of the matrix in 

(7). Then, one can use the solution (values of bi) to (6) to 

obtain the coefficients of the polynomial ∑    
     

    in (5): 

      ∑                       
                                      (8) 

 

IV. COMPUTING    

 

Consider the polynomial                  Again, let F(x) 

be the characteristic polynomial of an nxn matrix A. Then, (5) 

gives the matrix polynomial for the m
th

  power (m>n) of A: 

    ∑    
           

     (9) 

 In fact, the system (6) is represented by the matrix: 
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Considering that the characteristic polynomial of A has at most 

n-nonzero coefficients, yi, the 

matrix in (10) gets at most n-nonzero values in each row. This 

is due to its similarity to the band Toeplitz matrices. 

 

EXAMPLE: 

Let’s consider A= (
   
    
    

)  This matrix has two distinct 

eigenvectors. Its characteristic polynomial is F(x)= x
3
-

7x
2
+16x-12. Applying (10) for the 8

th
 power of A results in a 

6x7 matrix:  
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                     (11)

 

Solving (6), we obtain:  
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Using (8), one can obtain the matrix polynomial whose 

evaluation results in A
8
: 

 

A
8
= (19332)I-(20100)A+(5281)A

2
 =  
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                                            (12)

 

 

Note that to compute A
8
, our algorithm used about 55 

multiplications as opposed to 189 multiplications with the 

Naive algorithm, about 157 multiplications with the Winograd 

algorithm.  

 

Table 1. Multiplication Count (Matrix size n; Power m). 

 

                                n      m     Naive Wingrd  NewAlg 
                 
                 
                  
                   
                   
                   
                   
                   
                   

 

 

4.1   Theoretical Complexity of the algorithm for A
m

 

Looking at (11), one can see that the first and the second rows 

are not using any multiplication in the back-substitution 

process. The third row uses one multiplication associated with 

the entry value,  -7.  The forth row uses two multiplications 

associated with the entry values -7 and 16. This is because the 

value of b5 is 1 from the first row. The rows 5 and 6 each uses 

3 multiplications. Then, generalizing this pattern to an nxn 

matrix A, the maximum numbers of multiplication applied in 

our algorithm to solve (6) is:     (n)(n-1)/2 + (m-2n)(n).   

 

Additionally, (8) requires at most n(n+1)/2 many 

multiplications. Finally, (9) needs at most        
  

 
     

        multiplications. Here, we used the Winograd 

algorithm for the matrix powers ( < n ). Altogether, the total 

number of multiplication for the m
th

 (m>2n) power of an nxn 

matrix is at most: 

 

 n(n+1)/2+ (n-1)(n)                   
  

 
     

         
 

 
                                              

Figure 1. Comparison of the Numbers of Multiplication for 4x4 

matrices. 

 

 
 

Figure 2. Runtime comparison for a 3x3 Matrix. 

 

V. COMPARISONS 

 

If we compare the number of multiplication applied by our 

algorithm (NewAlg.) against the Naive approach, and the 

Winograd algorithm [1-3], one sees in table 1 above that our 

algorithm outperforms both algorithms. That is, even though 

difference between the numbers of multiplication applied is 

small for the smaller powers of A, as the matrix power 

increases, the difference increases almost exponentially. See 

fig. 1 above for the multiplication count for 3x3 matrices and 

for the matrix powers ranging from 10 to 50.  

 

As for the comparison of the NewAlg and the Iterative 

Algorithm, even though the Iterative algorithm and the 

NewAlgorithm use about the same number of multiplication, 

looking at the runtime values in seconds, one can see that the 

NewAlg performs significantly better especially for the higher 

matrix powers. This behavior is clearly depicted in Fig. 2 

above. In fact,  one can see that for the powers less than 2000, 

the two algorithms run at about the same speed with very little 

difference in the seconds it took for the algorithms to calculate 

the coefficients of the remainder polynomial in (2) and (9). 

After this point however it takes drastically more seconds for 

the Iterative algorithm to carry on calculations.  We should 

note that the data displayed in fig. 2 was gathered using a 

Latitude E7440, Intel(R) Core(TM) i5-4210U CPU @ 

1.70GHz 2.40GHz in a Mathematica environment. See the 

Appendix for the Mathematica programs used in each of the 

two algorithms. 
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VI. CONCLUSION   

 

 NewAlg in comparison to the Naive and the Winograd 

algorithm uses significantly less numbers of multiplication [1-

3]. Furthermore, in comparing to the Iterative process [4], the 

NewAlg performed in real-time significantly faster. Thus, 

integrating the primary ideas from NewAlg into the existing 

matrix power computation algorithms may prove to be an 

effective way to improve the runtime of the larger matrix 

powers.As a final remark, we should note that in our 

computations, we did not take into account the number of 

arithmetic operations used in the evaluation of the 

characteristics polynomials. We recognize that characteristic 

polynomials will add to the complexity of each of the 

algorithms. Since all the algorithms we discussed in the paper 

require the evaluation of the characteristic polynomial, this fact 

will not change our comparisons of the algorithm complexity. 
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Appendix 

 

Mathematica Programs for the Iterative and the New 

Algorithm 

 

Iterative Algorithm 

 
 

 

 

 

 

 

 

New Algorithm (NewAlg) 

 


