
Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 06 Issue: 01 June 2017 Page No.55-58

ISSN: 2278-2397

55

 Matrix Power Computation Band Toeplitz Structure

Hamide Dogan, Luis R. Suarez

University of Texas at El Paso, Mathematics, El Paso, Texas, USA

Email: hdogan@utep.edu, lrsuarez@miners.utep.edu

Abstract - A simple algorithm for computing the larger

positive integer powers m (>n) of an nxn matrix is discussed

in this paper. Most recent algorithms are mentioned, and

comparison data on the theoretical complexity of these

algorithms, and the runtime data are provided.

Keywords: Matrix Power; Algorithms; Algorithm Complexity;

Runtime; Band Toeplitz Matrices

 AMS Classifications: 15-04; 15B05; 15A24; 15A03; 15A99

I. INTRODUCTION

Computing powers of square matrices is needed in many areas

such as economics, statistics and bioinformatics. So far, the

existing matrix power algorithms require computationally

taxable approaches, many of which require eigenvalues. Thus,

it can be tedious and expensive processes. Furthermore many

others require distinct number of eigenvectors. For many

matrices, this fails.An Iterative algorithm has been recently

proposed by Abu-Saris and Ahmed [4]. This approach

bypasses the eigenvalue computations. Hence, it also does not

care whether a matrix has distinct eigenvectors. The particular

algorithm makes use of an iterative approach in computing the

coefficient of a remainder polynomial emerging from a

division algorithm. Even though their approach does not

require eigenvalue computations, due to its iterative nature, the

process can be computationally taxing. The distinguishing

feature of these algorithms however is that the computation of

A
k

(k>n) does not depend upon the computation of the powers

(>n) of the nxn matrix A contrary to the existing methods that

are integrating the classical matrix multiplication algorithms

such as Winograd and Strassen algorithms [1-3]. In this paper,

a simpler algorithm for computing any positive integer power k

(> n) of nxn matrices is described based upon the ideas

developed by Abu-Saris and Ahmed as well as others [4-5].

The characteristic of our algorithm is that not only the

computation of A
 k

 does not depend upon the computation of

the powers (> n), it also does not require expensive iterative

processes. We furthermore provide the comparison on the

theoretical complexity of the algorithms between the three

different approaches, and the runtime comparison of the

iterative algorithm and the new algorithm (NewAlg). We

provide the number of multiplications used in each algorithms

as the measure of their complexity.

II. PRELIMINARIES

2.1 Matrix Multiplication Algorithms

Matrix multiplication algorithms are used in many matrix

power computations. There are various approaches to matrix

multiplication. One of which is the Winograd algorithm as well

as the Naïve algorithm [1-3].

2.1.1 Naive Algorithm

The naive algorithm is solely based on the basic mathematical

definition for the multiplication of two matrices. To compute

each entry in the final n×n matrix, we need exactly n

multiplications and n - 1 additions. Since each of the n
2
 entries

in the first matrix is multiplied by exactly n entries from the

second matrix, the total number of multiplications is n×n
2

= n
3
,

and the total number of additions is (n - 1) · n
2
 = n

3
- n

2
. Thus,

we classify the naive algorithm as an O(n
3
) algorithm.

Applying the Naive algorithm to the m
th

 power of an nxn mat

 .

2.1.2 Winograd Algorithm

Winograd algorithm trades multiplications for additions, much

like Strassen’s method [1-2]. However, it is asymptotically the

same as the naive algorithm. Instead of multiplying individual

numbers as in the naive algorithm, Winograd algorithm uses

pairwise multiplication of the couples of entries and then

subtracts the accumulated error. That is, for an nxn matrices,

C=AB,







2/

1

,122,,212,,
))((

n

k

jijkkijkkiji
BAbabaC with







2/

1

2,12,

n

k

kikii
aaA and 






2/

1

,2,12

n

k

jkjkj
bbB

Since Ai and Bj are precomputed only once for each row and

column, they require only n
2
 multiplications [3]. The final

summation does require O(n
3
) multiplications, but only half of

those in the naive algorithm. Thus, the total number of

multiplications is reduced to 1⁄2 n
3
 + n

2
. For the m

th
 power

computation then Winograd algorithm requires at most total

multiplications:

 (⁄)

2.2 Iterative Algorithm

Cayley Hamilton theorem coupled with the Division Algorithm

is an essential component of the ideas used in the iterative

algorithm by Abu-Saris and Ahmed as well as Elaydi and

Harris [4-5].

Cayley Hamilton Thm:

 Let A ∈ M(n, n) with the characteristic polynomial

 p(x)=

Then,

 p(A)=

Division Algorithm:

Let g(x), and p(x) be the real-valued polynomials of degrees m

≥ n respectively. Then,

 (1)

In the recursive algorithm, Abu-Saris and Ahmed uses

specifically the polynomials, g(x)=x
m

and p(x) as the

characteristic polynomial of an nxn matrix A applied to (1)

along with the Cayley Hamilton theorem [4].

mailto:hdogan@utep.edu

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 06 Issue: 01 June 2017 Page No.55-58

ISSN: 2278-2397

56

Outline of the iterative algorithm:

Consider an nxn real-valued matrix A (

 ∑

Then,

 ,

Next, by the Cayley Hamilton Thm:

 = ∑

 (2)

These ideas result in the following iterative algorithm for the

evaluation of the coefficients bj(m) in (2):

 (

) (3)

The iteration in (3) uses one multiplication per coefficient,

totaling n multiplications for a single power. Hence, for the m
th

power of an nxn matrix A, the number of multiplications

carried out by (3) is:

(m-n).n+(n-2)(1/2n
3
+n

2
)+(n-1)n

2
(4)

Matrix polynomial in (2) requires the computation of the (n-

1)
th

 power of A. (3) provides the coefficients of the matrix

polynomial for the powers <n. In (4), we consider the

Winograd algorithm to calculate the number of multiplications

used in matrix multiplications. Note that there is no need to

repeat the matrix multiplication for each power in (2). Thus,

only the number of multiplications used in the evaluation of the

(n-1)
th

 power of A. Then, the total number of multiplications

used is: (n-2)(1/2n
3
+n

2
). Finally, (2) uses at most (n-1) n

2

scalar matrix multiplications.

III. DEVELOPMENT OF THE NEW ALGORITHM

(NEWALG)

Our algorithm expends the ideas from Abu-Saris and Ahmad

[4]. Rather than applying the long division ideas resulting in

the iteration (3), our algorithm applies vector space tools, in

turn, solves a linear system for the coefficients of the

remainder polynomial associated with the matrix power to be

computed.

Given a characteristic polynomial, F(x)=∑

 , of a nxn

matrix A. Consider the real vector space of the polynomials of

degree m (>n), and let’s consider its basis {1, x, x
2
, …,x

n-1
, F,

xF, x
2
F,…,x

m-n
F } Then, for any polynomial of degree m,

G(x)=∑

 , we obtain :

G(x)=∑

 =∑

 +∑

 (5)

Note that (5) is equivalent to the division algorithm

 where r(x)= ∑

 . The difference

between the two ideas is that (5) does not require expensive

iterative steps. In fact, it needs only basic matrix algebra

approaches to solving the linear system:

∑
 (6)

Thus, the system (6) is represented by an (m-n+1)x(m-n+2)

coefficient matrix that has a structure very similar to that of the

Toeplitz Matrices.











































n

m

m

m

nmnnmnn

nnn

nn

n

z

z

z

z

yyy

yyy

yy

y

...

....

.............

0

....0

0...00

2

1

)(1)(

21

1

 (7)

Solving (6) can be achieved via the basic back substitution

process or via the row reduced echelon form of the matrix in

(7). Then, one can use the solution (values of bi) to (6) to

obtain the coefficients of the polynomial ∑

 in (5):

 ∑
 (8)

IV. COMPUTING

Consider the polynomial Again, let F(x)

be the characteristic polynomial of an nxn matrix A. Then, (5)

gives the matrix polynomial for the m
th

 power (m>n) of A:

 ∑

 (9)

 In fact, the system (6) is represented by the matrix:







































0

...

0

0

1

....1

...........

10

1....0

10...00

)(1)(

21

1

nmnnmn

nn

n

yy

yy

y

 (10)

Considering that the characteristic polynomial of A has at most

n-nonzero coefficients, yi, the

matrix in (10) gets at most n-nonzero values in each row. This

is due to its similarity to the band Toeplitz matrices.

EXAMPLE:

Let’s consider A= (

) This matrix has two distinct

eigenvectors. Its characteristic polynomial is F(x)= x
3
-

7x
2
+16x-12. Applying (10) for the 8

th
 power of A results in a

6x7 matrix:

















































000121671

001216710

012167100

01671000

0710000

1100000

 (11)

Solving (6), we obtain:

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 06 Issue: 01 June 2017 Page No.55-58

ISSN: 2278-2397

57

1

7

33

131

473

1611

5

4

3

2

1

0













b

b

b

b

b

b

Using (8), one can obtain the matrix polynomial whose

evaluation results in A
8
:

A
8
= (19332)I-(20100)A+(5281)A

2
 =



























12866102413634

630512807329

630510247073

 (12)

Note that to compute A
8
, our algorithm used about 55

multiplications as opposed to 189 multiplications with the

Naive algorithm, about 157 multiplications with the Winograd

algorithm.

Table 1. Multiplication Count (Matrix size n; Power m).

 n m Naive Wingrd NewAlg

4.1 Theoretical Complexity of the algorithm for A
m

Looking at (11), one can see that the first and the second rows

are not using any multiplication in the back-substitution

process. The third row uses one multiplication associated with

the entry value, -7. The forth row uses two multiplications

associated with the entry values -7 and 16. This is because the

value of b5 is 1 from the first row. The rows 5 and 6 each uses

3 multiplications. Then, generalizing this pattern to an nxn

matrix A, the maximum numbers of multiplication applied in

our algorithm to solve (6) is: (n)(n-1)/2 + (m-2n)(n).

Additionally, (8) requires at most n(n+1)/2 many

multiplications. Finally, (9) needs at most

 multiplications. Here, we used the Winograd

algorithm for the matrix powers (< n). Altogether, the total

number of multiplication for the m
th

 (m>2n) power of an nxn

matrix is at most:

 n(n+1)/2+ (n-1)(n)

Figure 1. Comparison of the Numbers of Multiplication for 4x4

matrices.

Figure 2. Runtime comparison for a 3x3 Matrix.

V. COMPARISONS

If we compare the number of multiplication applied by our

algorithm (NewAlg.) against the Naive approach, and the

Winograd algorithm [1-3], one sees in table 1 above that our

algorithm outperforms both algorithms. That is, even though

difference between the numbers of multiplication applied is

small for the smaller powers of A, as the matrix power

increases, the difference increases almost exponentially. See

fig. 1 above for the multiplication count for 3x3 matrices and

for the matrix powers ranging from 10 to 50.

As for the comparison of the NewAlg and the Iterative

Algorithm, even though the Iterative algorithm and the

NewAlgorithm use about the same number of multiplication,

looking at the runtime values in seconds, one can see that the

NewAlg performs significantly better especially for the higher

matrix powers. This behavior is clearly depicted in Fig. 2

above. In fact, one can see that for the powers less than 2000,

the two algorithms run at about the same speed with very little

difference in the seconds it took for the algorithms to calculate

the coefficients of the remainder polynomial in (2) and (9).

After this point however it takes drastically more seconds for

the Iterative algorithm to carry on calculations. We should

note that the data displayed in fig. 2 was gathered using a

Latitude E7440, Intel(R) Core(TM) i5-4210U CPU @

1.70GHz 2.40GHz in a Mathematica environment. See the

Appendix for the Mathematica programs used in each of the

two algorithms.

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 06 Issue: 01 June 2017 Page No.55-58

ISSN: 2278-2397

58

VI. CONCLUSION

 NewAlg in comparison to the Naive and the Winograd

algorithm uses significantly less numbers of multiplication [1-

3]. Furthermore, in comparing to the Iterative process [4], the

NewAlg performed in real-time significantly faster. Thus,

integrating the primary ideas from NewAlg into the existing

matrix power computation algorithms may prove to be an

effective way to improve the runtime of the larger matrix

powers.As a final remark, we should note that in our

computations, we did not take into account the number of

arithmetic operations used in the evaluation of the

characteristics polynomials. We recognize that characteristic

polynomials will add to the complexity of each of the

algorithms. Since all the algorithms we discussed in the paper

require the evaluation of the characteristic polynomial, this fact

will not change our comparisons of the algorithm complexity.

References

[1] R. P. Brent (1970) Algorithms for matrix multiplications,

Stan-CS (Tech. Rept. of the Computer Science Dept. of

Stanford University, Stanford, CA), 1970, pp. 70-157.

[2] U. Manber (1989) Introduction to Algorithms: A Creative

Approach. pp 301- 304. Pearson Education: New Jersey,

1989.

[3] S. Winograd (1968) A new algorithm for inner-product,

IEEE Trans. Computers 17 (1968), 193-194.

[4] R. Abu-Saris and W. Ahmad (2005) Avoiding Eigenvalues

in Computing Matrix Power, The American Mathematical

Monthly , Vol. 112, Number 5, (May 2005) 450-454.

[5] S.N. Elaydi and W. A. Harris, Jr. (1997) On the

computation of A
n
, SIAM Rev. 40 (1998) 965-971.

Appendix

Mathematica Programs for the Iterative and the New

Algorithm

Iterative Algorithm

New Algorithm (NewAlg)

