
Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 06 Issue: 01 June 2017 Page No.1-4

ISSN: 2278-2397

1

An Implementation of Enhanced Combinatorial

Interaction Testing Software (ECITS)

S.Bhuvana
1
, M.V.Srinath

2

1
Research Scholar, Department of Computer Science, S.T.E.T Womens College, Mannargudi, Thiruvarur(D.t.).

2
Research Advisor & Director, Department of Master of Computer Application, S.T.E.T Womens College, Mannargudi,

Thiruvarur(D.t.).

Abstract - A 3-way strategy on Combinatorial Interaction

Testing is a hopeful approach to handle the difficult to capture

bugs. To verify the accuracy and reliability of software, it

should be tested from simple to complex scenario. Currently

software structures are composite and have a lot of potential

arrangements. Testing should be done in such a way to capture

all the difficult scenario bugs in different combinations. This

paper mainly focuses on the implementation of a 3-way

strategy on Enhanced Combinatorial Interaction Testing

Software (ECITS). It combines the distinct probable use of 3-

way strategy on even communication and adjustable asset

communication, as well as both input andoutput based

communication. With a purpose to support engineers to create

well-versed result by the use of a3-way strategy on different

applications, the paper describes stepwise illustration of its

practical implementation. The proposed ECITS catches the

error combinations in every single testing in java program.

This typical model considers nearly the day functionalism

review for errors, and also reports in which segment and batch,

an error has been occurred. The concerned batch contracts by

the errors in the segment and the segment is once more

informed and then ended for testing. The segment is promoted

to try and capable to be gauged report is generated which

proves the significance of the testing. Test moments of

predicted background provide developed outcome as well as

difference and the prevailing outline.

I. INTRODUCTION

Software development customization was done with the

modification of run-time and assemble time tendency,

authorizing customers to create measured variations, such that

their code conveys onflexible structures for ideal web servers

(e.g., Apache), databases (e.g. SQLServer), application servers

(e.g., Visual Studio) or working environment applications (e.g.,

MS Word) that have some or even frequent results. To relax on

after that will have significant features of other huge amount of

strategies, as graphic.The system space is basically the

analyzer selections for the compiler GCC and has 4:6 1061

preparations, and the 50% of the Apache server that dominates

archive side by side grows to the operations. Enhanced

Combinatorial Interaction Testing Software is that it which can

is a cost-adequate preparation of the entirely structure

performance and it was formed by the locations of 3 or else

fewer adoptions. We guess though that the preparations of

several of these perform will remain not actually strained as of

surprising hiding influences. Despite the fact validation the

exactness of the structure done in its entire strategy area is

excessive and fascinating, complete testing of entire plans is

essentially impractical. For example the sum of plans develops

exponentially by the total sum of system results, the number of

possible schedules generally route on the extreme side of the

available around resources, to route they consider cases in an

appropriate method. Unique research method, mentioned as

Enhanced Combinatorial Interaction Testing Software

(ECITS), systematically examines the plan space and tests

especially the selected provisions. ECITS events work through

principal starting of perfect structure plan area the established

of large sequences in which it can be collected. Frequently, this

typical integrates an assembly of system selections every

possible test will shows a slight amount of credibility locations,

and an assembly of structure extensive break strains that is a

part of systems, recognized after the previous test that to be

inacceptable. Assumed this typical, ECITS systems next list a

set of genuine preparations, a 3-way strategies cluster,

confidential which every attainable combination of credibility

locations for every combination of 3 results performs at

smallest once.Finally, the structure is patterned successful.Its

test suite on each preparation confidential the casing displays.

A preliminary components procedure to fading the outcomes of

surprising covering effects. Now that work originally

considered a combinatorial testing model that plans to promise

that every single research has a sensible chance to test every

recent bit and its grateful combinations have excellent

locations. We formed a censure determined adaptable

combinatorial testing method to appear in this regulation for

preparation. The importance of this approach, we identify

latent covering influences, undo their possible details, and

subsequently yield innovative plans that manage the

presumable disappointment source.

II. TESTING

Since 1980 combinatorial testing has been connected in various

fields and applications. For example, ADA compiler was first

tested by combinatorial scope in 1985. Tested PELMOREX

(Weather forecast generator) by pairwise combinatorial scope

in 1992 and created the OATS (Orthogonal Exhibit Testing

Strategy) framework for test case generation. Numerous papers

have been published that share the experience of utilizing CT

in practice. In year 2000 uses CT to test the ground framework

of satellite communication. In this paper that, how CT

improves the quality and efficiency of internet protocol testing.

In 1996 that CT can be utilized to test network interface has

been moreover utilized in other application too. In year 2000

proposed a procedure for testing GUI objects. Empirical study

of this procedure appears that, if we follow CT frameworks

then a less number of test cases can moreover detect the tests

of the GUI. It Created test cases with the help of CT to test the

email framework with AETG. Configuration testing and

browser testing were moreover evolved as the child of CT.

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 06 Issue: 01 June 2017 Page No.1-4

ISSN: 2278-2397

2

III. RELATED WORK

A) Cuckoo Exploration Constructed Pairwise Testing (PT) for

Combinatorial Testing

In this research the authors analyzed to find the efficiency of

software, for which pairwise cuckoo search[6] strategy is used.

Optimal test suite is formed by collecting the optimal test

cases. Optimal test case means every input pair can test the

code by its test cases effectively. With this approach to form

the optimal set of test cases, first step is to generate the binary

combination from the input parameters then interaction

element list is formed accordingly. Using pairwisethat

generates the initial test case randomly and find the best test

case till the interaction list is empty. Finally add the best test

case to test suite.

B) Applying Combinatorial Testing Strategy of CIT

In this implementation the authors introduce and analyze CT to

check a combinatorial test creation tool named ACTS[12]. At

first, they wish to increase knowledge and visions regarding, in

what way to apply combinatorial testing in repetition section.

And then they wish to estimate the reliability of CT applied to

a real life system. ACTS provides interface via command line

CLI and an equally sophisticated realistic operator interface.

The principle test of this research was to create a perfect model

and the given input range by establishing restrictions and

principles. After the perfect model was planned, they produced

test cases via ACTS, which stayed formerly later used to test

ACTS. The outcomes of this research displays the input range

displaying can be a major responsibility, and desires to be

sensibly accomplished. The execution results display that the

combinatorial testing is valuable in accomplishing great

program analysis and error recognition.

C) Combinatorial Interaction Testing Using the Tree Strategy

To minimize the test size and generate highly recommended

one to reduced test suite, 3-way testing strategy interaction is

added to existing “A Tree Based Strategy for Test Data

Generation and CostCalculation”[3]. Two algorithms are

mainly used in this implementation. Tree construction

algorithm that generates the needed test case and an interactive

calculation algorithm constructs 2 or 3 way test suites which

include all possible input combinations.

D) Combinatorial Interaction Test Using Hyper heuristic

Search

Most recently, the researchers present the hyper heuristic

algorithm[15] for CIT samples. It provides a single common

approach for solving same problem of different classes.

Experiments conducted with this algorithm proved that it can

compete with good solution across constrained and

unconstrained issues. Different tuning (low, medium and high)

of algorithm and various stages of algorithm (Early, middle,

late) gives better results cost wise and has the ability to learn

and adopt the search.

E) Sequence Based Combinatorial Testing

In this paper focuses on SCAT[8], a sequence based t-way

testing method. Main objective of SCAT is to produce minimal

test suite size. It uses TCGA (Test Case Generation Algorithm)

to select the optimal test case from pool of test case for final

test suite. TCGA can cover the most uncovered tuples.

Experimental outcome shows that it gives good results in test

suites size when compared with different existing strategies.

IV. PROPOSED METHODOLOGY

Enhanced Combinatorial Interaction Testing Software (ECITS)

testing has attracted both academia and industry. Several

software engineers have indicated that combinatorial testing

could dramatically diminish the number of tests while

remaining compelling for detecting programming faults.

Moreover, combinatorial testing is relatively easy to apply. As

of TF technique, combinatorial testing does not necessitate

investigation of source code, which is regularly troublesome

for practical applications. In the direction of applying CT, a set

of limitations, as well as their possible values, need to be

identified. This data is regularly as much as ease to obtain than

an operational model as required by numerous other TF

techniques. After the parameters and their values are identified,

the actual test Era procedure can be completely automated,

which is the main key to industrial acceptance. Combinatorial

testing relook has made significant progress in recent years,

and proceeds to make progress each day, particularly in the

bearings outlined in the past section. With these progresses,

combinatorial testing is expected to be completely integrated

with the existing testing forms and become an imperative

device in the toolbox of programming practitioners. The wide

use of combinatorial testing will help to significantly diminish

the cost of programming testing while increasing programming

quality. It will moreover progress the productivity of

programming engineers by reducing the time and energy they

spend on testing.

A) ECITS Using 3-ways

In this paper we received computational procedure which is

based on a searching procedure to make test suite. The

proposed procedure begins by building the test-tree based on

the information parameters and values. The estimation

develops the covering array, for all possible blends of

Information variables. After that the cost exhibit corresponding

to the number of test cases (or leaf nodes) is made and

initialized to some high value. Then, the cost estimation

begins. The estimation first calculates the maximum cost or

maximum number that can be secured by any test case for the

given set of parameters and values. Then it iterates to calculate

the cost of each leaf hub which represents the test case, in a

sequential order. The cost of any leaf hub or test case is equal

to the number of 3-ways that it covers in the covering array.

Once it reaches a leaf hub with the maximum cost, it erases

leaf hub from the list of leaf hubs Created by the test-tree and

includes hub or test case into the new list which holds all the

test cases that are to be included in the test suite. It moreover

erases all the sets that this test case has secured from the

covering array. 3-way covering exhibit can be created as in

B) ECITS Algorithm

Input: Java Code

Step 1:Assign number of lines in a file as variable ‘n’

Step 2:For each line ‘i ‘in a file till n value. Find the

function is present in each line and set it to array variable ‘m’

and append itnd for.

Step 3:Calculate the number of functions in array

variable‘m’ and assign it to variable ‘fn’

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 06 Issue: 01 June 2017 Page No.1-4

ISSN: 2278-2397

3

Step 4: For each function ‘j’ till ‘fn’ timesCalculate the

number of attributes and assign it to variable ‘g’end for

Step 5:For each variable ‘k’ till 3 time

If the number of attributes ‘g’ is greater than 3

Exit the program

Else

Find the data type of attribute and assign it to variable

‘f’Do combination of data type of attribute end if

end for

Output: combination

Table 1

Connecting

Information

Events

Arrangement

Tuples

Produced

Connecting

Informatio

n Events

Arrangement

Tuples

Produced

A,B,C A B C

A C B

B C A

B A C

C A B

C B A

A,D,E A D E

A E D

D A E

D E A

E A D

E D A

A,B,C A B D

A D B

B A D

B D A

D A B

D B A

B,C,D B C D

B D C

C B D

B D B

D B C

D C B

A,B,E A B E

A E B

B E A

B A E

E A B

E B A

B,D,E B D E

B E D

D B E

D E B

E B D

E D B

A,C,E A C E

A E C

C A E

C E A

E A C

E C A

C,D,E C D E

C E D

D C E

D E C

E C D

E D C

V. CONCLUSION

In this paper we broaden and progress our past strategy, to

support 3-ways testing quality interactions. The proposed

procedure is based on ECITS algorithms. A 3-way construction

estimation which develops the possible test cases and an

iterative cost estimation that develops effective 3-way test

suites, which spread all possible combinatorial interactions

between Information components.

Table 2: Comparison Result

Program Loc No.of

functions

Exec.

Time

No.of

Com

p1 1127 20 342 4.00E+09

p2 1267 22 451 4.00E+11

p3 1567 18 312 3.00E+06

p4 1765 16 286 6.00E+09

p5 2346 27 540 6.00E+15

We have implemented and checked five different java

programs containing various LOC (Length of Code) and also it

has several functions. As per our result we get different

execution time and combinations of that program. Those

details are illustrated at table 2.

For Example:

In java program p1 contains a total of 1700 line of code on

which 1127 are valid LOC. The remaining are blank lines and

comments, which are neglected. In those lines there are around

28 functions, and of that only 20 functions contains three input

arguments, which has been taken as input and processed for

various combinations. The performance result &testing

efficiency of input java programs is shown in figure 5.1 & 5.2.

The proposed procedure works well for diverse test quality

values, and can produce an effective and reduced test suite

size. Our procedure has been one of the best results for most of

the test. In this future work we will be developing not only the

three way construction estimation. It will require “n” number

of tuples, which are used to generate the test cases and the

loading test cases are minimal amount because it will reduce

the timing of test case generation.

Fig. 5.1 Performance Analysis

Fig. 5.2 Result of Testing Efficiency

References

[1] Abdullah, B., Nasser &Yazan, A., “A CuckooSearchBased

Pairwise Strategy for Combinatorial Testing Problem”, in

JATIT, Vol.82.No.1, 2015.

[2] Borazjany,M.N., Yu, L., &Y., Lei,“CombinatorialTesting

of ACTS: A Case Study”, 2012 IEEE FifthInternational

Conference on Software Testing.

[3] CemalYilmaz, SandroFouche& Myra, B., Cohen,

“Moving Forward with Combinatorial Interaction

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 06 Issue: 01 June 2017 Page No.1-4

ISSN: 2278-2397

4

Testing”, in IEEE Computer, Vol-47, Issue-2, PP-37 – 45,

2014.

[4] CemalYilmaz, “Test Case-Aware Combinatorial

Interaction Testing”, in IEEE SoftwareEngineering, Vol-

39, Issue-5, PP-684 – 706, 2013.

[5] Charles Song, Adam Porter & Jeffrey S., Foster,“iTree:

Efficiently Discovering High-Coverage Configurations

Using Interaction Trees”, in IEEESoftware Engineering,

Vol-40, Issue-3, PP-251 – 265, 2014.

[6] Christopher Henard, Mike Papadakis& Gilles Perrouin,

“Bypassing the Combinatorial Explosion: Using Similarity

to Generate and Prioritize T-Wise Test Configurations for

Software Product Lines”, inIEEE Software Engineering,

Vol-40, Issue-7, PP-650 – 670, 2014.

[7] D. M., Cohen, S. R., Dalal, M. L.,Fredman& G. C., Patton,

“The AETG system: an approach to testingbased on

combinatorial design”, in IEEEEvolutionary Computation,

Vol-19, Issue-4, PP-575– 591, 2015.

[8] Ely Porat,Amir Rothschild, “Explicit Nonadaptive

Combinatorial Group Testing Schemes”, in IEEE

Information Theory, Vol-57,Issue-12, PP-7982 – 7989,

2011.

[9] Fang Hao, MuraliKodialam, T. V.,Lakshman&Haoyu

Song, “Fast Dynamic Multiple-SetMembership Testing

Using Combinatorial Bloom”Filters”, in IEEE/ACM

Networking, Vol-20,Issue:1, PP-295 – 304, 2012.

[10] JustynaPetke, Myra, B., Cohen, Mark Harman & Shin

Yoo, “Practical Combinatorial Interaction Testing:

Empirical Findings on Efficiency and Early “Fault

Detection”, in IEEE Software Engineering,Vol-41, Issue-

9, PP- 901 – 924, 2015.

[11] Mohammad F. J.,Klaiba, Mohammad Subhi Al-

batahb&Rashad, J.,Rasrasc, “3-way InteractionTesting

using the Tree Strategy”, ICCMIT 2015,Procedia

Computer Science 65 (2015) 845 – 852

[12] Myra B.,Cohen , Matthew B., Dwyer,“Constructing

Interaction Test Suites for Highly-Configurable Systems

in the Presence of Constraints: A Greedy Approach”, in

IEEESoftware Engineering, Vol-34, Issue-5, PP-633 –

650, 2008.

[13] Renee C., Bryce, SreedeviSampath&Atif M.,Memon,

“Developing a Single Model and

TestPrioritizationStrategiesforEvent-DrivenSoftware”, in

IEEE Software Engineering, Vol-37,Issue-1, PP-48 – 64,

2011.

[14] YueJia, &Myra,B.,Cohen, “LearningCombinatorial

Interaction Test GenerationStrategies using

Hyperheuristic Search”, 2015IEEE/ACM, Vol-1, PP-540 –

550.

[15] M., ZamriZahir Ahmad, R., Razif Othman &M.S.Aziz

Rashid Ali, “Sequence CoveringArrayGenerator (SCAT)

For Sequence BasedCombinatorial Testing”, in IJAER,

Volume11,Issue: 8, PP: 5984-5991, 2016.

