
International Journal of Computer Science and Engineering Communications,
Volume.5, Issue.4 (2017): Page.1656-1667

www.ijcsec.com

1656

FVDAMP: Fully Virtualized DDoS Attack

Mitigation Procedure in Hybrid Clouds

 S.Narendiran1, N.Venkatesan2

1Research Scholar, St.Peter’s University, Chennai, TN, India
2Asst.Prof. & Dept. of Computer Science & Applications, St.Peter’s University, Chennai

naren.diran05@gmail.com

 Abstract—One of the main concerns for online service providers are Distributed

Denial of Service (DDoS) attacks because of their impact on cost/revenue and reputation. In this

paper presented, a novel platform to mitigate DDoS attacks, using Fully Virtualized DDoS Attack

Mitigation Procedure (FVDAMP), on public cloud applications using capabilities of software

defined infrastructure and network function virtualization techniques. FVDAMP deploys a copy of

the application’s topology on-the-fly (a shark tank) on an isolated environment in a private cloud,

during suspicious traffic is identified. FVDAMP then creates a virtual network that will host the

shark tank. The suspicious traffics are redirected to the shark tank until final decision is made by

Software-defined Data center’s (SDDC) Network controller which programs the virtual switches

dynamically. If traffic is proved to be unmalicious, SDDC controller installs flow rules on the

switches to redirect the traffic back to the original application. Thus, FVDAMP protects

applications automatically against potential DDoS threats and lowers the false positives associated

with common detection mechanisms by leveraging resources from a private cloud.

I.INTRODUCTION

Denial of service (DoS) attacks place a serious threat on applications on cloud [1]. Although there

are benefits to dynamic resource provisioning with pay-as-you-go billing in cloud, one disadvantage

is the possibility of attacks designed to increase the costs without corresponding increase in the

benefit of the application. Example of such attacks include Low-and-slow denial of service

(LSDoS) attacks which are low-bandwidth application-layer DoS attack. The attacker is able to

slowly degrade the performance of the application by exploiting weaknesses they have identified

[2]. Distributed denial of service attacks (DDoS) is also one of the top nine threats to cloud

computing environment according to Cloud Security Alliance [3]; out of all attacks in cloud

environment, 14% are DoS attacks. As cloud is becoming more widespread, the rate of DDoS

attacks is growing in parallel [4], [5]. DDoS attacks increase the workload on applications which

would lead to adding more computational power to withstand the additional load. In addition,

application owners are charged significantly for bandwidth usage caused by DDoS flooding raising

the bill for cloud usage drastically. Many companies use hybrid cloud deployment to allow them to

scale computing requirements beyond their infrastructure capacity while still use their private cloud

to reduce the cost. A hybrid cloud environment can also give rise to new opportunities to defend

against DDoS attacks. Hence, in this paper, we introduce a mitigation solution to fully implement a

defence strategy that makes use of private cloud to mitigate DDoS attacks targeting applications on

public cloud.

mailto:naren.diran05@gmail.com

International Journal of Computer Science and Engineering Communications,
Volume.5, Issue.4 (2017): Page.1656-1667

www.ijcsec.com

1657

We present Fully Virtualized DDoS Attack Mitigation Procedure (FVDAMP)1, a fully software

defined solution that is cloud agnostic due to its virtualized and modular design. Resources from

private cloud are used to handle suspicious traffic so that more time can be bought to distinguish

attacks from non-malicious transient behavior. To achieve its objectives, FVDAMP makes use of an

autonomic manager that monitors the target application and initiates the mitigation process, SDDC

and network virtualization techniques. When suspicious traffic is detected, FVDAMP provisions a

copy of the original application on a private cloud, referred to as shark tank, and dynamically

redirects the suspicious traffic there. FVDAMP protects stateless applications such as web

applications where the transition to/from the shark tank does not interfere with user data. The shark

tank provides the same functionalities as the original application, though with minimum amount of

resources. The advantage of FVDAMP to mitigate DDoS attacks is multi-folded; (1) DDoS attacks

are hard to detect. Due to large false positives, non-malicious users may be filtered out as well [6].

Therefore, by using a shark tank, more time can be spent for further analysis over the suspicious

traffic to make sure that the traffic is actually malicious and it is not some transient eccentric

behavior. (2) By isolating the suspicious traffic on the shark tank, the original application is

protected and serves only the traffic deemed legitimate. The users will experience normal behavior

of the application and will not feel the negative effects of the attack. (3) The attacker that is sent to

the shark tank has no indication that they have been discovered; they will experience high response

time and the attack will look successful. As a consequence, they will not feel the need to adapt his

strategy. (4) In case of adaptive applications, DDoS attacks may lead to excessive resources

consumption (e.g., adding new virtual machines, increasing bandwidth, etc.) which will lead to

higher costs. Therefore, by taking advantage of resources on a private cloud to host the shark tank,

only the minimum amount of resources is allocated to handle suspicious traffic and reduce the

associated costs.

Hence the original contributions of this paper are as following:

• We introduce and implement FVDAMP which is an malicious and non-malicious users

by taking suspicious traffic to an isolated environment for further analysis. effective Mitigation

Procedure that protects applications against severe damages of DDoS attacks by taking advantages

of virtualization and SDDC technologies. FVDAMP allows to have a more accurate detection

consensus by providing more time for traffic analysis while maintaining service availability in case

suspi-cious traffic is not malicious. FVDAMP is cloud agnostic and can be applied in any cloud

environment. Using the resources from an existing private cloud, FVDAMP bears a cheap solution

in isolating and identifying real attacks.

• We evaluate FVDAMP on real hybrid cloud environment where Amazon is used as the

public cloud and SAVI cloud [7] is leveraged as the private cloud. The results reveal promising

functional and non-functional properties of FVDAMP in real world scenarios.

 A few of the non abelian simple groups are known to be quotients of the (2,3,7) triangle group.

Many small possibilities can be eliminated, but for the majority of the remainder a more

sophisticated approach is likely to be required. Nevertheless three infinite families of simple groups

have been found to be Hurwitz groups:

1. The alternating group An is a Hurwitz group, for all but finitely many positive integers n.

2. The group PSL(2,q) is a Hurwitz group when q=7,and when q=p for any prime p≡ ±1

International Journal of Computer Science and Engineering Communications,
Volume.5, Issue.4 (2017): Page.1656-1667

www.ijcsec.com

1658

• We performed extensive experiments to evaluate the efficiency and scalability of the

SDDC network controller as the core component of FVDAMP, for processing the mitigation

commands. We particularly measure the response time of the SDDC network controller for

processing mitigation requests. The results provide valuable in-sights in achieving instant mitigation

actions with respect to SDDC network controller capacity. The remainder of the paper is as follows:

in Section II, we describe the architecture of FVDAMP and explain its building blocks. Section III

discusses the process of provisioning the shark tank. The design and architecture of SDDC network

Controller application is elaborated in Section IV. We then explain the experiment setup and

present the results of our experiments on FVDAMP in Section V. We overview the related work on

DDoS attack mitigation in Section VI. Section VII concludes the paper and states future work.

II FVDAMP ARCHITECTURE

A successful defense strategy against a DDoS attack has two major components: detection and

mitigation. FVDAMP is mainly a mitigation solution. However, for detection, FVDAMP uses a

number of sensors to detect DDoS threats. When DDoS threats are detected, FVDAMP starts to

mitigate the threats. The mitigation mechanism makes use of the concept of shark tank. A shark

tank is a functional copy of the application and application’s topology that uses a minimum amount

of resources, and handles the traffic identified as suspicious. While the application itself can reside

in a public or private cloud, we assume that the shark tank is desired to reside in a private cloud.

This way, the application owner has maximum amount of flexibility to deploy tools that further

analyze the suspicious traffic, extract relevant attacking patterns, isolate and restore misidentified

traffic. Also, because the shark tank has a reduced amount of resources at its disposal, the costs of

mitigation are controlled. Target Application: FVDAMP protects the target appli-cation using a

hybrid cloud environment where the target 2 application is hosted in a public cloud. Tailoring

FVDAMP to work on a pure public or private cloud would be a trivial task.

DDoS Sensors: The objective of this component is to detect the existence of DDoS threats. DDoS

sensors are used on all traffic: original application traffic and shark tank traffic; in former they

initially detect the suspicious traffic which leads to redirection to the shark tank, and in latter they

determine if the suspicious traffic redirected to shark tank is actually malicious or not. If traffic is

not malicious, it will be redirected back to the original application. In case of malicious traffic, two

strategies can be taken: (1) the malicious traffic is kept in the shark tank so that the attacker feels

that the attack has been successfully completed and as a result does not change its strategy, (2)

simply block the attack.

Shark Tank: The purpose of a shark tank is to act as a restricted area for the attackers so that they

can be placed under close surveillance. The shark tank absorbs the damage from the DDoS attacks

(i.e., all suspicious traffic will be redirected to one instance of application in the shark tank) and

allows the system to learn from these attacks for future reference. Moreover, the shark tank will be

constantly monitored to investigate if the attacks are still taking place. The shark tank aids to reduce

false positives, that is, if by mistake a user is redirected to the shark tank, they still get the requested

services. Another reason for using a functional copy of the actual application on the shark tank is to

International Journal of Computer Science and Engineering Communications,
Volume.5, Issue.4 (2017): Page.1656-1667

www.ijcsec.com

1659

prevent the shortcomings of the honeypot (the typical approach), that is, the malicious user might

learn that they have been detected after they discover the honeypot has limited interactivity

(simulation of the protected application). Although the same service is being offered, the amount of

resources that will be used in the shark tank will be less than the original application.

Autonomic Manager: The autonomic manager uses a Monitor-Analyze-Plan-Execute (MAPE) loop

[8] to monitor the protected application, plan and execute corrective actions so that desired

operation conditions are met. For this purpose, FVDAMP uses Hogna platform [9] to attain

application inputs when creating the shark tank. In addition, Hogna monitors the application and

adds or removes virtual machines (VMs) to meet the application criteria. For more detail on Hogna,

reader is referred to [9].

SDDC Network controller: In a software-defined data center, policy-driven automation enables

provisioning and ongoing management of logical compute, storage and network services. It controls

the routing of the traffic. Depending on the condition of the traffic, it programs the flow rules on the

switches either to the target application or to the shark tank dynamically. The details and

architecture of the SDDC Network controller application is discussed in section IV.

Shark Tank Orchestrator (STO): It deploys the shark tank on private cloud for each application

using overlay networks; this is one of the key points in making our solution cloud-agnostic.

Particularly, STO employs Virtual Extensible LAN (VXLAN) technology which is a tunneling

technology that can create arbitrary Layer 2 (L2) or Layer 3 (L3) networks by encapsulating L2

frames in L3 UDP packets. We employ Open Virtual Switch (OVS) [10] and OpenFlow initiatives

to set up the overlay networks and program the flows respectively. Details of STO operation is

discussed in Section III.

Initially, FVDAMP brings up a virtual switch that acts as an on-premise gateway on application

owners’ private cloud. The clients’ traffic first reaches the gateway and then will be redirected to

the public cloud through the application proxy (See Figure 1). DDoS sensors are installed on proxy

to sniff the incoming traffic and detect suspicious activity. If suspicious traffic is detected, the

DDoS sensors report the incidents to autonomic manager. The autonomic manager fires up the

mitigation process resulting in the creation of shark tank.

Figure 1: FVDAMP Architecture: The traffic first arrives at the gateway in private cloud. If it looks normal, it will be

redirected to the public cloud through the application proxy. Otherwise, it will be redirected to the shark tank that is

dynamically created on private cloud

International Journal of Computer Science and Engineering Communications,
Volume.5, Issue.4 (2017): Page.1656-1667

www.ijcsec.com

1660

It starts by instructing the STO to bring up the shark tank (i.e., the VMs), collects the IDs and IPs of

the new VMs and configures them for their respective roles (i.e., database, web workers). Then, the

autonomic manager will send the commands to the SDDC network Controller so that the required

rules are installed on the switches to dynamically redirect the incoming suspicious traffic to the

shark tank. The autonomic manager also installs DDoS sensors on the shark tank so that they

continuously monitor the suspicious traffic. When DDoS sensors determine that the suspicious

traffic is not malicious and it has been some transient behavior, the traffic is sent back to the

original application. In case of attacks, if the mitigation policy is to keep the attack in the shark

tank, no further commands will be sent to the SDDC Network Controller. Otherwise, the autonomic

manager sends commands to the SDDC Network Controller to block the attacks. Algorithm 1

summarizes the FVDAMP DDoS mitigation actions.

III.SHARK TANK PROVISIONING

STO creates the shark tank environment dynamically based on a topology descriptor file that is

provided by the autonomic manager. The topology descriptor file determines the shark tank

specifications including the number of VMs, corresponding images, and the topology. STO uses

virtual switches to build any type of topology over (L2) or (L3) networks. The image used to

instantiate the VMs can be pre-configured with the required services. For example, a VM that is

going to host the web application may use a pre-configured image in which a web server service

such as Apache Tomcat has been already installed. When topology information is provided, STO

starts to provision the shark tank. We developed STO such that it sends topology information to the

SDDC Network Controller while the shark tank is being provisioned. Hence, the SDDC Network

Controller is quickly updated with the latest network topology. Thus, three main steps are involved

in provisioning the shark tank:

VM instantiation: when topology descriptor file is provided to STO, STO starts instantiating the

required VMs based on the specified images. The specified images contain the required applications

and services. Overlay Network Establishment: after the VMs are up and running, the vxlan links are

used to build the overlay networks and construct the topology. OVS software is pre-configured on

the images and a script issues commands to each VM to establish VXLAN tunnels. This process is

performed at two levels: host level and switch level. At the host level, the script issues ssues

commands on each host to connect them to their corresponding virtual switches. At the switch level,

VXLAN tunnels are constructed to connect the switches to create the desired topology. Fig. 2

illustrates the overlay network establishment in private cloud corresponding to Fig. 1. STO creates

different overlay networks to ensure traffic separation between the networks. The reason for

creating over-lay networks only on private cloud is because after detection, only the safe traffic will

reach the public cloud (i.e., mitigation happens before traffic reaches public cloud. Topology

Update: whenever there is a change in topology (adding/removing VMs, switches, links etc.), the

changes are dynamically sent to the SDDC network Controller. The details of this process is

explained in Section IV.

International Journal of Computer Science and Engineering Communications,
Volume.5, Issue.4 (2017): Page.1656-1667

www.ijcsec.com

1661

IV. SDDC NETWORK CONTROLLER: DESIGN AND ARCHITECTURE

The SDDC network Controller acts as the brain of the network and it should always hold a global

view of the network so that it is able to configure the switches properly [11]. Our SDDC network

Controller runs Ryu SDDC framework [12] and programs the network flows using OpenFlow. Our

SDDC network Controller does not need a topology discovery module as opposed to other SDDC

network Controllers such as Floodlight [13] that involves overhead of topology discovery. Instead,

when STO creates the topology, it sends the topology information to the SDDC network Controller

so that the SDDC network Controller knows the topology a prior. Following, we explain how the

topology information and mitigation actions are sent to the SDDC network Controller in more

details.

A. Global View of Network Topology

1) L2 and L3 Network Topology View: Shark tank orchestration tool, STO, builds the entire

shark tank automatically through VM instantiation and overlay network establishment. We

implemented STO such that once the VMs are instantiated and links are established, L2 (connection

between hosts and their switch) and L3 topology (connections between switches in private cloud)

information are sent to the SDDC network Controller as JSON objects, stored in the topology file of

the SDDC network Controller. RabbitMQ technology [14] is used for sending this information to

SDDC network Controller. When the SDDC network Controller application is run for the first time,

it reads in the topology, and builds topology data structures accordingly. Now when a switch

forwards a packet to the SDDC network Controller for flow

Figure 3: SDDC network Controller Application Architecture

rule installation, the SDDC network Controller programs the switch immediately as it already holds

a complete view of the network topology.

2) Topology Update: When the topology is modified (i.e., a VM joins or leaves the shark tank or a

VXLAN link is added/removed) at run-time, the topology information is updated and the controller

is notified by STO about the change in the topology (topology update in Fig. 3). We have developed

a background RabbitMQ service on SDDC network Controller that always listens to topology

update notifications so that the SDDC network Controller continuously keeps the latest view of the

network topology.

B. Proactive Flow installation for DDoS Attack Mitigation

We have developed a DDoS attack mitigation component run via an independent thread that is

always listening for DDoS mitigation commands. When SDDC network Controller receives the

DDoS mitigation commands, it constructs a match field based on the received DDoS mitigation

command. The match field includes the source and destination IP addresses of suspicious traffic.

The SDDC network Controller then builds an action which includes the mitigation policy

(redirecting/blocking the traffic). Our mitigation policy also includes a rule to disguise the IP

addresses of the shark tank web server and replace it with that of the original server. This way the

International Journal of Computer Science and Engineering Communications,
Volume.5, Issue.4 (2017): Page.1656-1667

www.ijcsec.com

1662

suspicious user cannot know that it is actually interacting with the shark tank server (i.e., we do

NATing in SDDC way). After constructing the match field and action, SDDC network Controller

pushes packet-out commands to switches so that they forward the suspicious flows according to the

action. In addition, the SDDC network Controller modifies the rules on the switches’ flow tables

through flow-modification (proactive flow installation) which include the required actions that the

switches have to take when encountering any match in the future.

V.EXPERIMENT SETUP AND EVALUATION

We have performed a set of experiments to evaluate FVDAMP on a hybrid cloud. More

specifically, the target application that we would like to protect against DDoS threats is hosted on

Amazon EC2 public cloud. The architecture of the target application is depicted in Figure 1. The

application has a three-tier cluster using Apache 2.0 as load balancer, an eStore web application in

Tomcat 7, and a MySQL database. We use Smart Applications on Virtual Infrastructure (SAVI)

cloud as the private cloud to host the shark tank. SAVI is an OpenStack-based, multi-edge private

cloud for academic research [7]. The specification of VMs used in our experiments are jointly

presented in Tables I and II. We developed a workload generator such that users peri-odically send

HTTP requests to the application to select some items from the database and then wait for a random

period of time between 500-950 ms and then send the next request. This way the normal users send

approximately 1-2 requests/second. Furthermore, we used Hogna [9] to automatically deploy and

monitor the application and act as the autonomic manager in FVDAMP architecture. Hogna is an

autonomic manager that follows the MAPE-K loop methodology [8] to monitor applications,

analyze data, plan and execute corrective actions to meet application performance criteria.

FVDAMP takes advantage of Hogna to provide elasticity to the application. The elasticity is

triggered when CPU utilization goes above 80% or below 40% where in former, an instance will be

added as web worker while in latter, one instance will be removed from the original application

cluster. We set up DDoS sensors on both original application cluster and the shark tank to monitor

the traffic.

The DDoS sensors detect http flood attack which is a denial of service attack where malicious

clients try to inundate the resources of applications by sending a large number of requests. DDoS

sensors uses Snort to detect DDoS threats. Once suspicious clients are detected, they are reported to

Hogna, shark tank will be created and the suspicious clients are then redirected to the shark tank.

We first demonstrate the DDoS mitigation and elasticity features of FVDAMP under various traffic

conditions. Second, we show the result of the performance analysis on our SDDC network

Controller as one of the core elements of FVDAMP.

Before getting into the details of the first result, we explain the experiment main phases as follows:

 In the first phase, we introduce multiple attacks to the system and we see how multiple

incidents of attack are handled by FVDAMP;

 In the second phase, we introduce one intensive (i.e., large arrival rate) attack;

 In the third phase, we introduce two attacks;

 In the fourth phase, we increase the number of normal users (safe users) to trigger the

elasticity feature.

International Journal of Computer Science and Engineering Communications,
Volume.5, Issue.4 (2017): Page.1656-1667

www.ijcsec.com

1663

FVDAMP.

Figure 4 presents the result of our experiment with FVDAMP in Amazon EC2 and SAVI hybrid

cloud environment.

Figure 4: DDoS mitigation. Attack periods are shown in shaded background. FVDAMP redirects

the suspicious traffic to the shark tank on the fly.

Figure 4a shows the CPU utilization of the original application web server (blue line), the shark

tank web server (green line), and the number of web workers of the original application (purple

line). The purple line shows the elasticity feature of FVDAMP where web worker instances are

added or removed to meet the required performance metrics. Figure 4b shows the arrival rate (blue

line) and the response time (green line) of the original web server. The response time uses the left

Y-axis while the arrival rate is shown on the right Y-axis. Figure 4c presents the arrival rate (blue

line) and response time (green line) of the shark tank web server. The X-axis in all 3 graphs shows

the experiment iteration number where each iteration takes approximately one minute. The shaded

backgrounds in Figure 4 indicate the attack period. In the beginning of the experiment shown in

Figure 4, we only have normal traffic and the response time of original to iteration 60, we start and

stop 5 attacks one by one where the attackers send 50 to 100 request/second. Once each attack is

started, it increases the response time of the application server (5 peaks in response time on the

second plot). The response time during the attack period goes up to 450 ms in Figure 4b, however

we did not show the peak response times in order to show the normal response time of original

application server at around 50 ms. When first suspicious traffic is started, it triggers the Snort rule

and, as a result, the creation of the shark tank is initiated.

International Journal of Computer Science and Engineering Communications,
Volume.5, Issue.4 (2017): Page.1656-1667

www.ijcsec.com

1664

When the shark tank is ready, the redirection command will be sent to the SDDC network

Controller. The SDDC network Controller programs the gateway to redirect the suspicious client to

shark tank. Subsequent attack traffic will be redirected to the shark tank. It can be observed that the

CPU utilization of shark tank increases from 0 up to around 90% and the total arrival rate to the

shark tank raises up to 115 request/second (see Figure 4c). We then stop all the attack traffic at

around iteration 60. We can see that the arrival rate and response time of the shark tank decreases

accordingly. We then increase the number of regular users, hence the arrival rate and the CPU

utilization of the original web server increases from around 45% to 60% and the response time gets

stable again at 50 ms. After some time, In the second phase of the experiment, around iteration 80,

we start one attack where the attacker sends 80 request/second. We can see that the attack is

detected and redirected to shark tank for further processing.

We then do not stop the attack for a while, we can see that the response time and CPU utilization of

shark tank stays up. This is an example where attack traffic is kept at shark tank so that attacker

receives high response time and assume their attack has been successful and do not adapt their

attack strategy. Then we stop the attack, and it can be observed that the arrival rate and response

time of the shark tank decrease at around iteration 120 in Figure 4c. In the third phase, at around

iteration 132, we start another attack which results in a sudden increase in CPU utilization and

response time of original web server. The Snort alert is triggered, and the attacker is redirected to

shark tank. We can see how fast SDDC network Controller installs the redirection rules on the

gateway where the shark tank response time and arrival rate start to increase immediately. At

iteration 148, we start another attack which is then mitigated and redirected to the shark tank. When

the new attack traffic is routed to the shark tank, initially shark tank web server can handle the

requests well and the response time is as low as 24 ms from iteration 143 up to iteration 150. But

then at iteration 150 due to high arrival rate, the requests start to queue up and we can see the

response time of the shark tank web server increases further to 900 ms and its CPU utilization

reaches from 60% to 80% (shown in Figure 4a). We then stop the attacks which reduces CPU

utilization, arrival rate and response time of shark tank web server. So far we demonstrated how

FVDAMP effectively mitigates the DDoS threats by dynamically redirecting the traffic to the shark

tank. For testing the elasticity feature of FVDAMP, we start the fourth phase where we increase the

arrival rate of requests by adding more regular clients. Higher arrival rate raises the CPU utilization

of original web server and the autonomic manager triggers the elastic behavior. In Figure 4a, we can

see that up to around iteration 160 (the point that we increase the arrival rate of normal traffic), the

number of web servers in public cloud stays at 1. However, when we increase the arrival rate, we

can see in the second plot that the response time increases up to 300 ms and the CPU utilization gets

to more than 80%. This situation triggers Hogna’s elasticity policy and therefore one more instance

is added to the original application cluster to keep the response time low (shown in purple in Figure

4a). After one more web worker is added, we can observe that the CPU utilization of original web

server gets around 40% and the response time gets improved and stable at round 50 ms again. After

a while, around iteration 200, we stop some of the clients which results in the reduction of CPU

utilization of the application web server. The CPU utilization gets decreased below 40% which

again triggers the elasticity policy and the extra web worker is removed.

International Journal of Computer Science and Engineering Communications,
Volume.5, Issue.4 (2017): Page.1656-1667

www.ijcsec.com

1665

The time to redirect the traffic between the original appli-cation and the shark tank is an important

metric in FVDAMP and it is a function of SDDC network Controller response time and the switch’s

flow installation time. However, we observed that the redirection time is mainly associated with the

response time of the SDDC network Controller. Therefore, we carried out experiments to evaluate

the SDDC network Controller performance in processing the mitigation commands. In order to

increase the load on the SDDC network Controller, we set a large number of clients to send traffic

(attack and no attack). In doing so, we set up a client overlay network on SAVI separated from the

rest of the deployment. We used 8 medium VMs on the client network and on each VM, we setup

40 VXLAN links. Each link is connected to a port with an IPv4 address representing a client (i.e.,

320 clients in total). Then, we add routing entries to the Linux kernel routing table for each

interface so that each interface (i.e., client) sends/receives traffic independently from other clients

on the same VM to avoid ARP flux problem [15]. This way, the SDDC network Controller is

responsible for setting up flow rules for each client interacting with the application, in addition to

processing the mitigation commands.

We performed two types of experiments by using small and medium size VMs on SAVI,

specification of which is defined in Table I, to act as the SDDC network Controller. Figure 5

depicts the response time of the small and medium size SDDC network Controller for processing

mitigation commands (i.e., proactive flow installation). During this time, the SDDC network

Controller is also responsible for installing flow rules for application traffic reaching the switches

on SAVI (i.e., reactive flow installation). We performed each experiment type 4 times and

calculated the standard deviation as shown in Figure 5. The mitigation commands can be any of the

following: (1) the redirection of traffic from the regular application on Amazon EC2 to the shark

tank on SAVI; (2) the redirection of traffic from the shark tank on SAVI to the original application

on Amazon EC2; (3) and blocking the traffic in case of real attacks.

As can be seen in Figure 5, the response time increases as the mitigation command arrival rates gets

increased. For up to 1000 requests/second, we can see that the response time of both controllers are

almost the same. Therefore, in terms of performance, for up to 1000 requests/second, a small size

controller can handle the requests as good as a medium size controller. We can see that for up to

650 requests/second, the response time for both medium and small controllers is less than 10 ms.

However, around arrival rate of 1200 requests/second, we can observe that the response time of the

small controller starts to deviate from that of medium one such that the small controller gets

saturated at around 3000 requests/second with response time of 94 ms. In medium controller,

however, for up to 2100 requests/second, the response time is under 20 ms. The medium controller

finally gets saturated at around 4800 requests/second where the response time reaches 88 ms.

Discussion: In FVDAMP, when suspicious traffic is initially detected, a shark tank is dynamically

instantiated on the private cloud, if it does not already exist. While shark tank is being provisioned,

suspicious traffic will be reaching the original application. Hence, there is a trade off on the

frequency of provisioning/deprovisioning the shark tank; if we aim to quickly mitigate the effect of

potential DDoS attacks, shark tank will not be deprovisioned for some time, even though there is no

suspicious traffic at the time. Therefore, once created, shark tank will be maintained for some

longer time to serve potential incoming suspicious traffic (i.e., deprovisioning once every 6 hours).

The amount of time, the shark tank will be maintained for, once created, depends on the likelihood

of the application being under attack. On the other hand, if we are more concerned about the

International Journal of Computer Science and Engineering Communications,
Volume.5, Issue.4 (2017): Page.1656-1667

www.ijcsec.com

1666

resource consumption on private cloud, shark tank will be deprovisioned after some short amount of

time if there is no suspicious traffic. As a result, the discussed trade off has to be taken by the

application owners on the frequency of shark tank decommissioning.

FVDAMP mainly focuses on the mitigation mechanism, therefore, it will be an effective solution to

complement detection techniques to reduce large false positives; shark tank provides longer time for

attack analysis while it still maintains the service availability until final decision is drawn. Another

advantage of FVDAMP is that since all the traffic first goes to the private cloud and then to the

public cloud, all the redirection between shark tank and the original application happens on the

private cloud. As a result, no charge will be applied from the public cloud provider to application

owners as all the mitigation process happens before the traffic reaches the public cloud.

VI.RELATED WORK

Arbor Networks [16] surveyed how DDoS attacks evolved over the past decade, and the current

threats that data centers have to handle. The survey found that the largest attack in 2014 has peaked

at 400 Gbps, and more than 75% of data centers were targeted. It also reveals that the number of

attacks and their intensity continues to increase. Some experts argue that the only sensible solution

is to improve security of all internet hosts at the same time [17] and prevent the attacks to become

damaging, while other doubt that such mechanisms can be widely adopted [18]. Other researchers

claimed that DDoS attacks are not a security problem, but a scalability one [19]. Because the

attackers will attempt to make their requests indistinguishable from the rest of the traffic, they can

defeat the detection mechanisms. In this case, the only solution to maintain service is to increase the

quantity of resources (and this is an expensive solution). Barna et al. [20][21] investigate mitigation

techniques at the application level. They use a performance model to analyze the impact of the

traffic on some key performance metrics. The traffic that is identified as undesirable is redirected

(using the HTTP redirect header) to a secondary system where the users are challenged with a

CAPTCHA. The requests that are part of a DoS attack will be discarded (since the CAPTCHA is

not solved) and the misidentified requests are going to be slowed down (but not dropped). These

results are further extended in [22], where the authors also use cost of resources when the decisions

are made. Kalliola et al. [23] use machine-learning-based DDoS defense mechanism and use SDDC

Network techniques to maintaining service quality by detecting and blocking the attacks upon

detection. They evaluate their defense strategy using testbed experiments. Wang et al. [24] propose

a DDoS attack detection and reaction solution. In their work, the DDoS mitigation strategy depends

on public cloud provider to take actions against threats while FVDAMP uses overlay networks

which makes the solution independent of cloud providers. In addition, Wang et al. [24] do not

define where the suspicious traffic is hosted after being detected. Fung et al. [25] propose a dynamic

traffic engineering solution to perform DDoS mitigation by assigning suspicious traffic to lower

priority tunnels. They evaluated their solution using simulation. Our work is different from above

work on several dimensions: in our solution, we do not block suspicious traffic once it is detected;

instead, we dynamically scale out and create a shark tank which offers the same service as the target

application on private cloud; FVDAMP is an autonomic and versatile solution that isolates the

suspicious traffic to protect the application and creates the environment for further analysis of

traffic. Moreover, by leveraging resources from private cloud, our solution attains a cost-effective

International Journal of Computer Science and Engineering Communications,
Volume.5, Issue.4 (2017): Page.1656-1667

www.ijcsec.com

1667

mitigation strategy. We evaluate our solution on a real environment using Amazon as public cloud

and SAVI as private cloud. In previous work [6], a conceptual model of shark tank was introduced.

However, in the current paper, we present a concrete architecture and Mitigation Procedure for

hybrid cloud environment. In addition, we fully implement the solution and evaluate it on real cloud

environment. Furthermore, we present the design details and evaluated the performance of the

SDDC network Controller on SAVI cloud.

VII.CONCLUSION

In this paper, we presented FVDAMP, a software defined Mitigation Procedure that dynamically

mitigates the DDoS threats on applications on public cloud using private cloud. We demonstrated

the features of FVDAMP through extensive experiments on Amazon and SAVI clouds. Our results

showed that FVDAMP effectively mitigates the severe effects of DDoS attacks. In addition,

FVDAMP yields elasticity feature to applications on cloud to maintain the desirable performance.

FVDAMP provides the same functionality to suspicious clients until final decision is made. This

way, on one hand, the original application is protected against damages of DDoS threats, and on the

other hand, it lowers the rate of false positive alarms which results in customer dissatisfaction and

decline in service revenue. As future work, we plan to investigate the end-to-end performance of

FVDAMP. Also, we intend to examine various policies for provisioning/deprovisioning the shark

tank and the impact of those policies on the applications in terms of performance and economics.

We are also going to include an in-house detection mechanism in FVDAMP where the SDDC

network Controller uses network statistics to detect suspicious/malicious traffic.

REFERENCES

[1] Denial of Service attacks and the emergence of “Intrusion Prevention Systems”, SANS

GSEC Practical Assignment v1.4b,Option 1 (Re-Submission),Adrian Brindley November 1, 2002.

[2] VMware® Software-Defined Data Center, Capabilities and Outcomes, technical white paper

[3] CAAMP: Completely Automated DDoS Attack Mitigation Procedure in Hybrid

Clouds,Nasim Beigi-Mohammadi, Cornel Barna, Mark Shtern, Hamzeh Khazaei and Marin Litoiu

Department of Computer Science,York University Toronto, ON, Canada Protecting Web Servers

from Distributed Denial of Service Attacks, Department of Multimedia Computing University of

Ulm Germany, Frank Kargl, Joern Maier, Michael Weber.

