Journal of Applied Science and Engineering Methodologies
Volume 3, No.3 (2017): Page.529-534
www.jasem.in

Green’s Equivalence Relations on the
multiplicative semigroup zn

Rajalekshmi 1.S
Research Scholar
Department of Mathematics
University of Kerala, Thiruvananthapuram
lekshmiajith08 @gmail.com

The Multiplicative Semigroup Z, has a vital role in the studies of computer
scientists. This paper present the various characteristics of this structure.
The rank of Z,, the characteristics of regular Z,, the idempotents in Z,,

Abstract : Green’s relations on Z, and the D-classes of Z, are the topics under
discussion. It is already known that the Multiplicative semigroup Z, is
regular iff n is square free. This paper is expected to be helpful for a
comparative study between regular and non-regular Z.
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1. Introduction

Z, is a group under +, and is a monoid under x. If n is a prime, then, Z, is a group under x,.
For our discussion, Z, is the semigroup under x,.[2,3] Already it was observed that Z, is a
regular semigroup iff n is square free.[9] Since Z, is a commutative semigroup, the Green’s
equivalence relations on Z, coincides. Then obviously each D-class of Z, consists of only one
cell in its egg-box diagram. Also regular Z, is a best known subclass of intersection of locally
inverse semigroups and E-solid semigroups. This paper mainly concentrates on the total
number of distinct D-classes of Zj,,

2. Preliminaries

Let S be a semigroup. The set of all idempotent elements of S is denoted by E(S). Z, is an E-
semigroup as E(Z,) forms a subsemigroup of Z, . An element a of S is called regular if there
exists x in S such that axa = a .[1,4,5] The set of all regular elements of S is denoted by
Reg(S). The semigroup S is called regular if all its elements are regular. S is regular means
Reg(S) = S. An element a’ is an inverse of a if aa’a = a and a’aa’ = a’ . An element with
an inverse is necessarily regular. Also every regular element has an inverse; if there exists x €
S such that axa = a then define, a’ = xax and then aa’a = axaxa = axa = a and

aa' = xaxaxax = xaxax = xax = a'.An element a may have more than one inverse.
The set of inverses of an element is denoted by V (a). If every element of a regular
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semigroup S has a unique inverse, then S is called an inverse semigroup. Obviously, regular
Z, is an orthodox semigroup.

Theorem 2.1 [9] Consider (Z,, %p), the multiplicative semigroup of integers modulo ’n,
where Z, = {0,1,... (n — 1)}, then for x € Z,, ¥ is a regular element of Z, iff x and %

where (n, x) is the g.c.d of n and x, are relatively prime.

Corollary 2.1.1. [9] The multiplicative semigroup Z, is a regular semigroup iff n is square
free.

Theorem 2.2 [10,11,12] 1 If (a, b) = 1 and n = ab, then any idempotent in Z, has the form
a o(b) .

Corollary 2.2.1[10, 11,12] Let the prime factorization of n be n= p/"py2ps*....p,", the
prime factorization consists of m factors, then the number of idempotents in Z, is 2™ .

A set K is a generating set of a semigroup S if S contains all possible products of elements of
K. Rank of S denote the minimum cardinality of a generating set. Here we introduce a
formula for rank of Z, in the later section.

If a is an element of a semigroup S, the smallest left ideal of S containing a is Sa U {a},
which is denoted by S'a and is called the principal left ideal generated by a. Similarly, we
can define the principal right ideal generated by a as aS* = Sa U {a}. Also the principal
two-sided ideal of S generated by a is StaS? . Using the ideals mentioned above J. A.
Green(1951), introduced five equivalence relations on a semigroup S which are denoted by L,
R,H,DandJ. Leta,b € S,then

(i) alLb ifand only if S'a = S'b

(i) aRb if and only if aS = bS?
(i)  a/bifandonlyif SlaS! = Sibs?
vy H=LNR

vy D=LVR

The corresponding equivalence classes of an element a € S are denoted by La, Ra,Ja, Ha
and Da respectively.[1] A semigroup S is said to be E-solid if for all e,f,g € E(S)
satisfying eLfRg, then there exists an idempotent h € S such that eRhLg. Z, is an E-solid
semigroup. InZ,,L = R = H = D = ], each D-class of Z, consists of only one cell in its
egg-box diagram.

3. Greens Equivalence relations on Z,

In this paper, the set of all numbers less than n and relatively prime to n is denoted by R[n].

Corresponding to each factor x # 1 of n, a set is constructed which is denoted by M, to
contain all multiples of x less than n, which are not divisible by a larger factor of n.
Obviously, the sets My are disjoint. Example: For n = 30, the set M, = {2, 4, 8, 14, 16, 22, 26,
28}
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Lemma3.1.1 Z,=R[n] U (UM,) .
Proof: For each factor x of n there is an My and all the sets My are disjoint by their

construction. If there is an integer u which is less than n and which does not belongs to

(U My), then it will be relatively prime to n and hence belongs to R[n]. Thus the lemma.

Lemma 3.1.2 Rank(Z,) is the number of factors of n .

Proof: By lemma 3.1.1. Z, is the disjoint union R[n] U (\*) M,). Then a generating set K for
Z, consists of each facor of n. Thus the result.

Theorem 3.1 The number of distinct D-classes in Z, is the number of factors of n.

OR

If n=p™p,?ps°....pc*, then the number of distinct D-classes in Z, is (m; + 1)(m; + 1)(m3 +
1)...(my + 1).

Proof: By lemma 3.1.1, Z, = R[n] u(u My).

Claim01: The D-class of any element in R[n] is the same as D;. Let t € R[n] be arbitrary. ==
(n,t)=1== 3t € Z,suchthattt’=t"t =1 It is needed to prove D; = D;. It is obvious that

tZ, S Z, . Lety € Z, be arbitrary Then y =yl = ytt’ =tyt’ ==y € t Z, == Z, S t Z,,. Thus Z,
=tZ,==>1tD1== D; =D;.

Claim02: For each factor x #1 of n, the D-class of any element in My is the same as Dy. Let
mx € My where m # 1 be arbitrary. Obviously mx Z, € x Z,. To prove the converse a
function f from x Z, to mx Z, is defined as, f(xt) = mxt, for each t € Zn. Now f(xt;) = f(xt,)
== mxt; = mxt; == mx(t; — t;) = 0(modn). But My is constructed so that mx is not a factor of
n. == (t — t;) = 0(modn) == t; = tp(modn) == xt; = xty(modn). Thus f is an injective
function. Shows that x Z, € mx Z,. Thus X Z, = mx Z, == XDmx == Dy = Dx.

From lemma 3.1.1, claimO1 and claim02 it is obvious that R[n] contributes the D-class D
and each My contributes the D-class Dy, where x # 1 is a factor of n. Thus it is concluded
that the number of distinct D-classes in Z, is the number of factors of n, provided the D-class
D, corresponds to the factor n itself.

Corollary: 3.1.1 The number of distinct D-classes in regular Z, is 2™ .

Proof: By Corollary 2.1.1. we have Z, as regular iff n = p;psps...pm, @ product of distinct
primes. Then by theorem 3. 1. there will be 2™ distinct D-classes.

Example 3.1.1. Consider Z3y, an example for a regular Z.

We have R[30]= {1, 7, 11, 13, 17, 19, 23, 29} and the Euler Phi function ¢(30) = 8.
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Z30=T1Z30= 11730 = 13Z30 = 17730 = 192739 = 23Z3¢ = 29Z3,. The D-classes of all elements of
R[30] are the same as D-class of 1 denoted by D;.

Now 2Z3 = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28} = 4Z3y = 8239 = 14Z3 =
16730 = 22730 = 26239 = 28Z3 . Shows that the D-class of 2 consists of D, = {2, 4, 8, 14, 16,
22, 26, 28}.

3Z3 =40, 3,6,9, 12,15, 18, 21, 24, 27} = 9Z30= 2173y = 27Z3;, . Shows that the D-class of 3
consists of D3 = {3, 9, 21, 27}.

5Z30 = {0, 5, 10, 15, 20, 25} = 25Z3, Shows that the D-class of 5 consists of Ds = {5, 25}.
6Z30 = {0, 6, 12, 18, 24} = 1273y = 1823 = 24Z3, Shows that the D-class of 6 consists of Dg
= {6, 12, 18, 24}.

10Z3p = {0, 10, 20} = 20Z3, Shows that the D-class of 10 consists of D1 = {10, 20}.

1573, = {0, 15} Shows that the D-class of 15 consists of D15 = {15}. Now 0Z3, = {0} Shows
that the D-class of 0 consists of Dy = {0}.

Thus the distinct D-classes of Z are D1, D, D3, Ds, Dg, D1o, D15, Do. Corresponding to each
factor of 30 there is a D-class. Totally there are 8 distinct classes. The natural partial ordering
on the set of D-classes is given by the Hasse diagram,

Example 3.1.2. Consider Zzs, an example for a non-regular Z,,.

The distinct D-classes of Zzs are Dy, Dy, D3, D4, Dg, Dg, D12, D1g and Dy, the Hasse Diagram
of the lattice of D-classes of Zs is given below:

Corollary 3.1.2 In Z,, the number of idempotents is less than or equal to the number of
distinct D-classes.
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Proof: By theorem 3.1, the number of distinct D-classes in Z, is
(Mg+1)(Mma+1)(m3+1)....(me+1) whenever n= p™py2p;°....pe" . But by corollary 2.2.1 the

number of idempotents in Z, is 2. Since each m; > 1, each m; + 1 > 2, which yields the
result.

Theorem 3.2 If D represents a D-class of Z,, then D contains at most one idempotent.

Proof: In a D-class, either every element of D is regular or no element of D is regular.[1]
Also no H-class contains more than one idempotent.[1] Since idempotents are regular, every
D-class containing an idempotent is regular. Since in a regular D-class, each L-class and each
R-class contains an idempotent and in Z,, L =R = H =D = J., each H-class contains exactly
one idempotent. If D is not regular, it doesn’t contain an idempotent. Thus the result is
obvious.

Theorem 3.3 Z oy o is not regular if at least one m; > 1.
)

17 P27 Ps

Proof: If at least one m; > 1 , the number of idempotents 2X (by corollary 2.2.1), will be
strictly less than the number of distinct D-classes [I(m; + 1)(by theorem 3.1). But by

theorem 3.2 there will be at least one D-class which does not contain any idempotent. As the
D-class which does not contain an idempotent is irregular, the semigroup Zp is

momp omg o mg
1 P27 P3Py

irregular.
Theorem 3.4: A regular Z, is isomorphic to some Zp;pzps...Pk-

Proof: By fundamental theorem of Arithmetic(Unique Prime Factorization Theorem), every
integer n > 1, can be expressed as N = p;" py2 P3°.... P« , Where pa, pz, Ps, ..., Pk are distinct
primes. If Z, is regular, each D-class of Z, contains exactly one idempotent. By theorem 3.1
there will be H(mi + 1) distinct D-classes for Z,. Since each D-class of regular Z, has

exactly one idempotent there will be [T (m; + 1) idempotents in Z, . Then 2k = [1(m; + 1),
where i = 1, 2, 3, ..k. Here the L. H. S. and R. H. S. Consists of k-factors, therefore by
comparing them, each (mij+ 1) =2 .= (m;+ 1) =2 = m; =1, for each i. Thenn= p, p, p,...p,

. Shows that there exists some k € Z such that | Z, | = | Zpip2ps...px | . Hence they are
isomorphic.

Theorem 3.5 If n=pp,p;...p,, & product of distinct primes then Z, is an inverse
semigroup.

Proof: Since Z,, is a commutative semigroup, its idempotents commute. Z _ is regular

P1P2P3---P
by corollary 2.1.1. Let e and f be two idempotents in a single L-class then e and f are two
right identities in the same L-class.Thusef = e and = f.Butin Z,, we have

ef = fe. Thus it means e = f, every L-class in regular Z, contains exactly one
idempotent. Also for Z,, L=R =H =D =J. Thus in a D-class of regular Z, , there will be
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exactly one idempotent . Let x € Z, where n= p, p,p,...p, . Suppose there exists two inverses

say X' and x' for x. Then the idempotents, xx'and xx'* belongs to Dy and so by the above
argument ' = xx'' . Similarly, the idempotents x'x and x''x are equal. Then x' = x'xx' =
X'(xx) = x'(xx'") = (x)x" = (x"x)x" = x""xx"" = x". Therefore, each x € Z,
possesses a unique inverse in Z,. Thus regular Z, is an inverse semigroup.

4. Conclusion

For every positive integer n we can easily identify all possible distinct D-classes of Z, using

the sets R[n] and My of each factor x # 1 of n. Also the Hasse Diagram of the Lattice of the
partially ordered set of D-classes of Z, can be constructed, using which we can compare the
lattices of D-classes of a regular Z, and a non-regular Z,,.
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