Green's Equivalence Relations on the multiplicative semigroup zn

Rajalekshmi I.S

Research Scholar
Department of Mathematics
University of Kerala, Thiruvananthapuram
lekshmiajith08@gmail.com

The Multiplicative Semigroup Z_n has a vital role in the studies of computer scientists. This paper present the various characteristics of this structure. The rank of Z_n , the characteristics of regular Z_n , the idempotents in Z_n , Green's relations on Z_n and the D-classes of Z_n are the topics under discussion. It is already known that the Multiplicative semigroup Z_n is regular iff n is square free. This paper is expected to be helpful for a comparative study between regular and non-regular Z_n .

Multiplicative semigroup integers modulo n, rank of a semigroup, regular semigroup, idempotent elements of a semigroup, Euler function, Green's relations, Green's equivalence classes.

1. Introduction

 Z_n is a group under $+_n$ and is a monoid under \times_n . If n is a prime, then, Z_n is a group under \times_n . For our discussion, Z_n is the semigroup under \times_n .[2,3] Already it was observed that Z_n is a regular semigroup iff n is square free.[9] Since Z_n is a commutative semigroup, the Green's equivalence relations on Z_n coincides. Then obviously each D-class of Z_n consists of only one cell in its egg-box diagram. Also regular Z_n is a best known subclass of intersection of locally inverse semigroups and E-solid semigroups. This paper mainly concentrates on the total number of distinct D-classes of Z_n .

2. Preliminaries

Let S be a semigroup. The set of all idempotent elements of S is denoted by E(S). Z_n is an E-semigroup as $E(Z_n)$ forms a subsemigroup of Z_n . An element a of S is called regular if there exists x in S such that axa = a.[1,4,5] The set of all regular elements of S is denoted by Reg(S). The semigroup S is called regular if all its elements are regular. S is regular means Reg(S) = S. An element a is an inverse of a if aa'a = a and a'aa' = a'. An element with an inverse is necessarily regular. Also every regular element has an inverse; if there exists $x \in S$ such that axa = a then define, a' = xax and then aa'a = axaxa = axa = a and a'aa' = xaxaxax = xaxax =

Journal of Applied Science and Engineering Methodologies Volume 3, No.3 (2017): Page.529-534 www.jasem.in

semigroup S has a unique inverse, then S is called an inverse semigroup. Obviously, regular Z_n is an orthodox semigroup.

Theorem 2.1 [9] Consider (Z_n, \times_n) , the multiplicative semigroup of integers modulo 'n, where $Z_n = \{\overline{0}, \overline{1}, \dots \overline{(n-1)}\}$, then for $x \in Z_n$, \overline{x} is a regular element of Z_n iff x and $\frac{n}{(n,x)}$, where (n, x) is the g.c.d of n and x, are relatively prime.

Corollary 2.1.1. [9] The multiplicative semigroup Z_n is a regular semigroup iff n is square free.

Theorem 2.2 [10,11,12] 1 If (a, b) = 1 and n = ab, then any idempotent in \mathbb{Z}_n has the form $a^{\varphi(b)}$.

Corollary 2.2.1[10, 11,12] Let the prime factorization of n be $n = p_1^{n_1} p_2^{n_2} p_3^{n_3} \dots p_m^{n_m}$, the prime factorization consists of m factors, then the number of idempotents in \mathbb{Z}_n is 2^m .

A set K is a generating set of a semigroup S if S contains all possible products of elements of K. Rank of S denote the minimum cardinality of a generating set. Here we introduce a formula for rank of Z_n in the later section.

If a is an element of a semigroup S, the smallest left ideal of S containing a is $Sa \cup \{a\}$, which is denoted by S^1a and is called the principal left ideal generated by a. Similarly, we can define the principal right ideal generated by a as $aS^1 = Sa \cup \{a\}$. Also the principal two-sided ideal of S generated by a is S^1aS^1 . Using the ideals mentioned above J. A. Green(1951), introduced five equivalence relations on a semigroup S which are denoted by L, R, H, D and J. Let $a, b \in S$, then

- (i) aLb if and only if $S^1a = S^1b$
- (ii) aRb if and only if $aS^1 = bS^1$
- (iii) aJb if and only if $S^1a S^1 = S^1bS^1$
- (iv) $H = L \cap R$
- (v) $D = L \vee R$

The corresponding equivalence classes of an element $a \in S$ are denoted by La, Ra, Ja, Ha and Da respectively.[1] A semigroup S is said to be E-solid if for all e, f, $g \in E(S)$ satisfying eLfRg, then there exists an idempotent $h \in S$ such that eRhLg. Z_n is an E-solid semigroup. In Z_n , L = R = H = D = J, each D-class of Z_n consists of only one cell in its egg-box diagram.

3. Greens Equivalence relations on Z_n

In this paper, the set of all numbers less than n and relatively prime to n is denoted by R[n]. Corresponding to each factor $x \neq 1$ of n, a set is constructed which is denoted by M_x to contain all multiples of x less than n, which are not divisible by a larger factor of n. Obviously, the sets M_x are disjoint. Example: For n = 30, the set $M_2 = \{2, 4, 8, 14, 16, 22, 26, 28\}$

Lemma 3.1.1 $Z_n = R[n] \cup (\bigcup_x M_x)$.

Proof: For each factor x of n there is an M_x and all the sets M_x are disjoint by their construction. If there is an integer u which is less than n and which does not belongs to

 $(\ \cup\ M_x)$, then it will be relatively prime to n and hence belongs to R[n]. Thus the lemma.

Lemma 3.1.2 Rank (Z_n) is the number of factors of n.

Proof: By lemma 3.1.1. Z_n is the disjoint union $R[n] \cup (\bigcup_x M_x)$. Then a generating set K for Z_n consists of each facor of n. Thus the result.

Theorem 3.1 The number of distinct D-classes in Z_n is the number of factors of n.

OR

If $n = p_1^{m_1} p_2^{m_2} p_3^{m_3} \dots p_k^{m_k}$, then the number of distinct D-classes in \mathbb{Z}_n is $(m_1 + 1)(m_2 + 1)(m_3 + 1) \dots (m_k + 1)$.

Proof: By lemma 3.1.1, $Z_n = R[n] \cup (\bigcup_x M_x)$.

Claim01: The D-class of any element in R[n] is the same as D₁. Let $t \in R[n]$ be arbitrary. \Rightarrow $(n, t) = 1 \Rightarrow \exists t' \in Z_n$ such that tt' = t' t = 1 It is needed to prove D_t = D₁. It is obvious that

 $tZ_n \subseteq Z_n$. Let $y \in Z_n$ be arbitrary Then $y = y1 = ytt' = tyt' = \Rightarrow y \in t$ $Z_n = \Rightarrow Z_n \subseteq t$ Z_n . Thus $Z_n = t$ $Z_n = \Rightarrow tD1 = \Rightarrow D_1 = D_t$.

Claim02: For each factor $x \ne 1$ of n, the D-class of any element in M_x is the same as D_x . Let $mx \in M_x$ where $m \ne 1$ be arbitrary. Obviously $mx \ Z_n \subseteq x \ Z_n$. To prove the converse a function f from $x \ Z_n$ to $mx \ Z_n$ is defined as, f(xt) = mxt, for each $t \in Zn$. Now $f(xt_1) = f(xt_2) = mxt_1 = mxt_2 = mx(t_1 - t_2) \equiv 0 \pmod{n}$. But M_x is constructed so that mx is not a factor of mx = mxt = mxt

From lemma 3.1.1, claim01 and claim02 it is obvious that R[n] contributes the D-class D₁ and each M_x contributes the D-class D_x, where $x \neq 1$ is a factor of n. Thus it is concluded that the number of distinct D-classes in Z_n is the number of factors of n, provided the D-class D₀ corresponds to the factor n itself.

Corollary: 3.1.1 The number of distinct D-classes in regular Z_n is 2^m .

Proof: By Corollary 2.1.1. we have Z_n as regular iff $n = p_1p_2p_3...p_m$, a product of distinct primes. Then by theorem 3. 1. there will be 2^m distinct D-classes.

Example 3.1.1. Consider Z_{30} , an example for a regular Z_n .

We have $R[30] = \{1, 7, 11, 13, 17, 19, 23, 29\}$ and the Euler Phi function $\varphi(30) = 8$.

 $Z_{30} = 7Z_{30} = 11Z_{30} = 13Z_{30} = 17Z_{30} = 19Z_{30} = 23Z_{30} = 29Z_{30}$. The D-classes of all elements of R[30] are the same as D-class of 1 denoted by D₁.

Now $2Z_{30} = \{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28\} = 4Z_{30} = 8Z_{30} = 14Z_{30} = 16Z_{30} = 22Z_{30} = 26Z_{30} = 28Z_{30}$. Shows that the D-class of 2 consists of $D_2 = \{2, 4, 8, 14, 16, 22, 26, 28\}$.

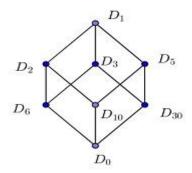
 $3Z_{30} = \{0, 3, 6, 9, 12, 15, 18, 21, 24, 27\} = 9Z_{30} = 21Z_{30} = 27Z_{30}$. Shows that the D-class of 3 consists of $D_3 = \{3, 9, 21, 27\}$.

 $5Z_{30} = \{0, 5, 10, 15, 20, 25\} = 25Z_{30}$ Shows that the D-class of 5 consists of $D_5 = \{5, 25\}$. $6Z_{30} = \{0, 6, 12, 18, 24\} = 12Z_{30} = 18Z_{30} = 24Z_{30}$ Shows that the D-class of 6 consists of $D_6 = \{6, 12, 18, 24\}$.

 $10Z_{30} = \{0, 10, 20\} = 20Z_{30}$ Shows that the D-class of 10 consists of $D_{10} = \{10, 20\}$.

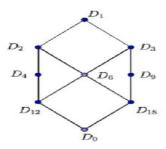
 $15Z_{30} = \{0, 15\}$ Shows that the D-class of 15 consists of $D_{15} = \{15\}$. Now $0Z_{30} = \{0\}$ Shows that the D-class of 0 consists of $D_0 = \{0\}$.

Thus the distinct D-classes of Z_{30} are D_1 , D_2 , D_3 , D_5 , D_6 , D_{10} , D_{15} , D_0 . Corresponding to each factor of 30 there is a D-class. Totally there are 8 distinct classes. The natural partial ordering on the set of D-classes is given by the Hasse diagram,



Example 3.1.2. Consider Z_{36} , an example for a non-regular Z_n .

The distinct D-classes of Z_{36} are D_1 , D_2 , D_3 , D_4 , D_6 , D_9 , D_{12} , D_{18} and D_0 , the Hasse Diagram of the lattice of D-classes of Z_{36} is given below:



Corollary 3.1.2 In Z_n , the number of idempotents is less than or equal to the number of distinct D-classes.

Journal of Applied Science and Engineering Methodologies Volume 3, No.3 (2017): Page.529-534 www.jasem.in

Proof: By theorem 3.1, the number of distinct D-classes in Z_n is $(m_1+1)(m_2+1)(m_3+1)....(m_k+1)$ whenever $n=p_1^{m_1}p_2^{m_2}p_3^{m_3}....p_k^{m_k}$. But by corollary 2.2.1 the number of idempotents in Z_n is 2^k . Since each $m_i \geq 1$, each $m_i+1 \geq 2$, which yields the result.

Theorem 3.2 If D represents a D-class of Z_n , then D contains at most one idempotent.

Proof: In a D-class, either every element of D is regular or no element of D is regular.[1] Also no H-class contains more than one idempotent.[1] Since idempotents are regular, every D-class containing an idempotent is regular. Since in a regular D-class, each L-class and each R-class contains an idempotent and in Z_n , L = R = H = D = J., each H-class contains exactly one idempotent. If D is not regular, it doesn't contain an idempotent. Thus the result is obvious.

Theorem 3.3 $Z_{p_1^{m_1}p_2^{m_2}p_3^{m_3}...p_k^{m_k}}$ is not regular if at least one $m_i > 1$.

Proof: If at least one $m_i > 1$, the number of idempotents 2^k (by corollary 2.2.1), will be strictly less than the number of distinct D-classes $\prod_i (m_i + 1)$ (by theorem 3.1). But by theorem 3.2 there will be at least one D-class which does not contain any idempotent. As the D-class which does not contain an idempotent is irregular, the semigroup $Z_{p_1^{m_1}p_2^{m_2}p_3^{m_3}...p_k^{m_k}}$ is irregular.

Theorem 3.4: A regular Z_n is isomorphic to some $Zp_1p_2p_3...p_k$.

Proof: By fundamental theorem of Arithmetic(Unique Prime Factorization Theorem), every integer n ≥ 1, can be expressed as $n = p_1^{m_1} p_2^{m_2} p_3^{m_3} p_k^{m_k}$, where p_1 , p_2 , p_3 ,, p_k are distinct primes. If Z_n is regular, each D-class of Z_n contains exactly one idempotent. By theorem 3.1 there will be $\prod_i (m_i + 1)$ distinct D-classes for Z_n . Since each D-class of regular Z_n has exactly one idempotent there will be $\prod_i (m_i + 1)$ idempotents in Z_n . Then $2^k = \prod_i (m_i + 1)$, where i = 1, 2, 3, ...k. Here the L. H. S. and R. H. S. Consists of k-factors, therefore by comparing them, each $(m_i + 1) = 2$. $\Rightarrow (m_i + 1) = 2 \Rightarrow m_i = 1$, for each i. Then $n = p_1 p_2 p_3 ... p_k$. Shows that there exists some $k \in Z$ such that $|Z_n| = |Z_{p_1 p_2 p_3 ... p_k}|$. Hence they are isomorphic.

Theorem 3.5 If $n = p_1 p_2 p_3 ... p_k$, a product of distinct primes then Z_n , is an inverse semigroup.

Proof: Since Z_n , is a commutative semigroup, its idempotents commute. $Z_{p_1p_2p_3...p_k}$ is regular by corollary 2.1.1. Let e and f be two idempotents in a single L-class then e and f are two right identities in the same L-class. Thus ef = e and e . But in e0, we have

ef = fe. Thus it means e = f, every L-class in regular Z_n contains exactly one idempotent. Also for Z_n , L = R = H = D = J. Thus in a D-class of regular Z_n , there will be

exactly one idempotent. Let $x \in Z_n$ where $n = p_1 p_2 p_3 ... p_k$. Suppose there exists two inverses say x' and x'' for x. Then the idempotents, xx' and xx'' belongs to D_x and so by the above argument x' = xx''. Similarly, the idempotents x'x and x''x are equal. Then x' = x'xx' = x'(xx') = x'(xx'') = (x'x)x'' = (x''x)x'' = x''xx'' = x''. Therefore, each $x \in Z_n$ possesses a unique inverse in Z_n . Thus regular Z_n is an inverse semigroup.

4. Conclusion

For every positive integer n we can easily identify all possible distinct D-classes of Z_n using the sets R[n] and M_x of each factor $x \neq 1$ of n. Also the Hasse Diagram of the Lattice of the partially ordered set of D-classes of Z_n can be constructed, using which we can compare the lattices of D-classes of a regular Z_n and a non-regular Z_n .

REFERENCES

- 1. Howie, J.M. An Introduction to Semigroup Theory. London: Academic Press, 1976.
- 2. Clifford, A.H. and Preston, G.B. The Algebraic Theory of Semigroups, vol. I. Math. Surveys of the American Math. Soc. 7, Providence, R.I., 1961.
- 3. Edwards, P.M. Fundamental semigroups. Proc. R. Soc. Edinb. Sec. A. 99(1985), 313-317.
- 4. Grillet, P.A. The structure of regular semigroups. I. A representation. Semigroup Forum.8 (1974), 177183.
- 5. Hall, T.E. On regular semigroups. J. Algebra. 24 (1973), 124.
- 6. Higgins, P.M. Techniques of Semigroup Theory. Oxford University Press, 1992.
- 7. Nambooripad, K.S.S. Structure of regular semigroups. I. Fundamental regular semigroups. Semigroup Forum. 9 (1975), 354363.
- 8. Nambooripad, K.S.S. Structure of regular semigroups. I.Mem. Amer. Math. Soc.22 (1979).
- 9. Ng. Danpattanamongkon and Y. Kemprasit, Regular Elements and BQ-elements of the semigroup, International Mathematical Forum, 5, 2010 no. 51- 2533-2539.
- 10. SEMIGROUP PRESENTATIONS Nikola Ruskuc A Thesis Submitted for the Degree of PhD at the University of St. Andrews.
- 11. American Mathematical Society Translations Series2, Volume 15. 1960
- 12. Applied Discrete Structures By K. D. Joshi .
- 13. Subgroups of Free Idempotent Generated Semigroups need not be Free, Mark Brittenham, Stuart W. Margolis, & John Meakin.
- 14. Multiplicative Subgroups of Z_n by Stanley E. Payne(10th October, 1995)