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 Abstract : 

The Multiplicative Semigroup Zn has a vital role in the studies of computer 

scientists. This paper present the various characteristics of this structure. 

The rank of Zn, the characteristics of regular Zn, the idempotents in Zn, 

Green’s relations on Zn and the D-classes of Zn are the topics under 

discussion. It is already known that the Multiplicative semigroup Zn is 

regular iff  n  is square free. This paper is expected to be helpful for a 

comparative study between regular and non-regular Zn. 
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1. Introduction 

 Zn is a group under +n and is a monoid under ×n. If n is a prime, then, Zn is a group under ×n. 

For our discussion, Zn is the semigroup under ×n.[2,3] Already it was observed that Zn is a 

regular semigroup iff n is square free.[9] Since Zn is a commutative semigroup, the Green’s 

equivalence relations on Zn coincides. Then obviously each D-class of Zn consists of only one 

cell in its egg-box diagram. Also regular Zn is a best known subclass of intersection of locally 

inverse semigroups and E-solid semigroups. This paper mainly concentrates on the total 

number of distinct D-classes of Zn. 

 2. Preliminaries  

Let S be a semigroup. The set of all idempotent elements of S is denoted by E(S). Zn is an E-

semigroup as E(Zn) forms a subsemigroup of Zn . An element   of S is called regular if there 

exists x in S such that         .[1,4,5] The set of all regular elements of S is denoted by 

Reg(S). The semigroup S is called regular if all its elements are regular. S is regular means 

Reg(S) = S. An element a’ is an inverse of a if        and           . An element with 

an inverse is necessarily regular. Also every regular element has an inverse; if there exists x ∈ 

S such that         then define,          and then                        and 

                                  . An element   may have more than one inverse. 

The set of inverses of an element is denoted by      . If every element of a regular 
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semigroup S has a unique inverse, then S is called an inverse semigroup. Obviously, regular 

Zn is an orthodox semigroup.  

Theorem 2.1 [9] Consider (Zn, ×n), the multiplicative semigroup of integers modulo ’n, 

where Zn =   ̅  ̅             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   then for x ∈ Zn,  ̅ is a regular element of Zn iff x and 
 

      
 , 

where (n, x) is the g.c.d of n and x, are relatively prime. 

 Corollary 2.1.1. [9] The multiplicative semigroup Zn is a regular semigroup iff n is square 

free.  

Theorem 2.2 [10,11,12] 1 If (a, b) = 1 and       , then any idempotent in Zn has the form 

  
φ(b)

 .  

Corollary 2.2.1[10, 11,12] Let the prime factorization of n be mn

m

nnn
ppppn ....321

321 , the 

prime factorization consists of m factors, then the number of idempotents in Zn is 2
m

 . 

 A set K is a generating set of a semigroup S if S contains all possible products of elements of 

K. Rank of S denote the minimum cardinality of a generating set. Here we introduce a 

formula for rank of Zn in the later section. 

 If   is an element of a semigroup S, the smallest left ideal of S containing   is          

which is denoted by     and is called the principal left ideal generated by  . Similarly, we 

can define the principal right ideal generated by   as               . Also the principal 

two-sided ideal of S generated by   is       . Using the ideals mentioned above J. A. 

Green(1951), introduced five equivalence relations on a semigroup S which are denoted by L, 

R, H, D and J. Let     ∈   , then 

(i)     if and only if             

(ii)      if and only if            

(iii)      if and only if                 

(iv)             

(v)             

The corresponding equivalence classes of an element   ∈    are denoted by             

and    respectively.[1] A semigroup S is said to be E-solid if for all       ∈       

satisfying      , then there exists an idempotent   ∈    such that      . Zn is an E-solid 

semigroup. In Zn,                  , each D-class of Zn consists of only one cell in its 

egg-box diagram.  

3. Greens Equivalence relations on Zn 

 In this paper, the set of all numbers less than n and relatively prime to n is denoted by       

Corresponding to each factor       of n, a set is constructed which is denoted by    to 

contain all multiples of   less than n, which are not divisible by a larger factor of n. 

Obviously, the sets Mx are disjoint. Example: For n = 30, the set M2 = {2, 4, 8, 14, 16, 22, 26, 

28} 
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 Lemma 3.1.1 Zn = R[n]   (
x
 Mx) . 

 Proof: For each factor x of n there is an Mx and all the sets Mx are disjoint by their 

construction. If there is an integer   which is less than n and which does not belongs to 

 (
x
Mx), then it will be relatively prime to n and hence belongs to R[n]. Thus the lemma.  

Lemma 3.1.2 Rank(Zn) is the number of factors of n . 

 Proof: By lemma 3.1.1. Zn is the disjoint union R[n]   (
x
 Mx). Then a generating set K for 

Zn consists of each facor of n. Thus the result.  

Theorem 3.1 The number of distinct D-classes in Zn is the number of factors of n.  

OR 

If km

k

mmm
ppppn ....321

321 , then the number of distinct D-classes in Zn is (m1 + 1)(m2 + 1)(m3 + 

1)....(mk + 1).  

Proof: By lemma 3.1.1, Zn = R[n]  (
x
 Mx).  

Claim01: The D-class of any element in R[n] is the same as D1. Let t ∈ R[n] be arbitrary. =⇒ 

(n, t) = 1 =⇒ ∃ t’ ∈ Zn such that tt’ = t’ t = 1 It is needed to prove Dt = D1. It is obvious that  

tZn ⊆ Zn . Let y ∈ Zn be arbitrary Then y = y1 = ytt’ = tyt’ =⇒ y ∈ t Zn =⇒ Zn ⊆ t Zn. Thus Zn 

= t Zn =⇒ tD1 =⇒ D1 = Dt .  

Claim02: For each factor x  1 of n, the D-class of any element in Mx is the same as Dx. Let 

mx ∈ Mx where      be arbitrary. Obviously mx Zn ⊆ x Zn. To prove the converse a 

function   from x Zn to mx Zn is defined as, f(xt) = mxt, for each t ∈ Zn. Now f(xt1) = f(xt2) 

=⇒ mxt1 = mxt2 =⇒ mx(t1 − t2) ≡ 0(modn). But Mx is constructed so that mx is not a factor of 

n. =⇒ (t1 − t2) ≡ 0(modn) =⇒ t1 ≡ t2(modn) =⇒ xt1 ≡ xt2(modn). Thus   is an injective 

function. Shows that x Zn ⊆ mx Zn. Thus x Zn = mx Zn =⇒ xDmx =⇒ Dx = Dmx.  

From lemma 3.1.1, claim01 and claim02 it is obvious that R[n] contributes the D-class D1 

and each Mx contributes the D-class Dx, where       is a factor of n. Thus it is concluded 

that the number of distinct D-classes in Zn is the number of factors of n, provided the D-class 

D0 corresponds to the factor n itself.  

Corollary: 3.1.1 The number of distinct D-classes in regular Zn is 2
m

 .  

Proof: By Corollary 2.1.1. we have Zn as regular iff n = p1p2p3...pm, a product of distinct 

primes. Then by theorem 3. 1. there will be 2
m

 distinct D-classes.  

Example 3.1.1. Consider Z30, an example for a regular Zn.  

We have R[30] = {1, 7, 11, 13, 17, 19, 23, 29} and the Euler Phi function φ(30) = 8.  
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Z30 = 7Z30 = 11Z30 = 13Z30 = 17Z30 = 19Z30 = 23Z30 = 29Z30. The D-classes of all elements of 

R[30] are the same as D-class of 1 denoted by D1.  

Now 2Z30 = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28} = 4Z30 = 8Z30 = 14Z30 = 

16Z30 = 22Z30 = 26Z30 = 28Z30 . Shows that the D-class of 2 consists of D2 = {2, 4, 8, 14, 16, 

22, 26, 28}.  

3Z30 = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27} = 9Z30 = 21Z30 = 27Z30 . Shows that the D-class of 3 

consists of D3 = {3, 9, 21, 27}.  

5Z30 = {0, 5, 10, 15, 20, 25} = 25Z30 Shows that the D-class of 5 consists of D5 = {5, 25}. 

6Z30 = {0, 6, 12, 18, 24} = 12Z30 = 18Z30 = 24Z30 Shows that the D-class of 6 consists of D6 

= {6, 12, 18, 24}. 

 10Z30 = {0, 10, 20} = 20Z30 Shows that the D-class of 10 consists of D10 = {10, 20}.  

15Z30 = {0, 15} Shows that the D-class of 15 consists of D15 = {15}. Now 0Z30 = {0} Shows 

that the D-class of 0 consists of D0 = {0}.  

Thus the distinct D-classes of Z30 are D1, D2, D3, D5, D6, D10, D15, D0. Corresponding to each 

factor of 30 there is a D-class. Totally there are 8 distinct classes. The natural partial ordering 

on the set of D-classes is given by the Hasse diagram, 

 

Example 3.1.2. Consider Z36, an example for a non-regular Zn. 

The distinct D-classes of Z36 are D1, D2, D3, D4, D6, D9, D12, D18 and D0, the Hasse Diagram 

of the lattice of D-classes of Z36 is given below:  

 

Corollary 3.1.2 In Zn, the number of idempotents is less than or equal to the number of 

distinct D-classes.  
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Proof: By theorem 3.1, the number of distinct D-classes in Zn is 

(m1+1)(m2+1)(m3+1)....(mk+1) whenever km

k

mmm
ppppn ....321

321 . But by corollary 2.2.1 the 

number of idempotents in Zn is 2
k
 . Since each mi ≥ 1, each mi + 1 ≥ 2 , which yields the 

result.  

Theorem 3.2 If D represents a D-class of Zn, then D contains at most one idempotent.  

Proof: In a D-class, either every element of D is regular or no element of D is regular.[1] 

Also no H-class contains more than one idempotent.[1] Since idempotents are regular, every 

D-class containing an idempotent is regular. Since in a regular D-class, each L-class and each 

R-class contains an idempotent and in Zn, L = R = H = D = J., each H-class contains exactly 

one idempotent. If D is not regular, it doesn’t contain an idempotent. Thus the result is 

obvious.  

Theorem 3.3 
km

k

mmm
pppp

Z
....3

3
2

2
1

1

is not regular if at least one mi > 1.  

Proof: If at least one mi > 1 , the number of idempotents 2
k
 (by corollary 2.2.1), will be 

strictly less than the number of distinct D-classes 
i

 (mi + 1)(by theorem 3.1). But by 

theorem 3.2 there will be at least one D-class which does not contain any idempotent. As the 

D-class which does not contain an idempotent is irregular, the semigroup 
km

k

mmm
pppp

Z
....3

3
2

2
1

1

 is 

irregular.  

Theorem 3.4: A regular Zn is isomorphic to some Zp1p2p3...pk. 

 Proof: By fundamental theorem of Arithmetic(Unique Prime Factorization Theorem), every 

integer n ≥ 1, can be expressed as km

k

mmm
ppppn ....321

321 , where p1, p2, p3, ...., pk are distinct 

primes. If Zn is regular, each D-class of Zn contains exactly one idempotent. By theorem 3.1 

there will be 
i

 (mi + 1) distinct D-classes for Zn. Since each D-class of regular Zn has 

exactly one idempotent there will be 
i

 (mi + 1) idempotents in Zn . Then 2
k
 = 

i

 (mi + 1), 

where i = 1, 2, 3, ...k. Here the L. H. S. and R. H. S. Consists of k-factors, therefore by 

comparing them, each (mi + 1) = 2 . ⇒ (mi + 1) = 2 ⇒ mi = 1, for each i. Then kppppn ...321

. Shows that there exists some k ∈ Z such that | Zn | = | Zp1p2p3...pk | . Hence they are 

isomorphic.  

Theorem 3.5 If kppppn ...321 , a product of distinct primes then Zn, is an inverse 

semigroup.  

Proof: Since Zn, is a commutative semigroup, its idempotents commute. 
kppppZ ...321

 is regular 

by corollary 2.1.1. Let   and   be two idempotents in a single L-class then   and   are two 

right identities in the same L-class.Thus        and      . But in Zn , we have 

        . Thus it means      , every L-class in regular Zn contains exactly one 

idempotent. Also for Zn, L = R = H = D = J. Thus in a D-class of regular Zn , there will be 
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exactly one idempotent . Let x ∈ Zn where kppppn ...321 . Suppose there exists two inverses 

say 'x  and ''x  for x. Then the idempotents,    and      belongs to Dx and so by the above 

argument          . Similarly, the idempotents     and      are equal. Then            

                                                        . Therefore, each x ∈ Zn 

possesses a unique inverse in Zn. Thus regular Zn is an inverse semigroup.  

4. Conclusion 

 For every positive integer n we can easily identify all possible distinct D-classes of Zn using 

the sets R[n] and Mx of each factor       of n. Also the Hasse Diagram of the Lattice of the 

partially ordered set of D-classes of Zn can be constructed, using which we can compare the 

lattices of D-classes of a regular Zn and a non-regular Zn.  
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