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 Abstract: In order to improve the stage operation such as extraction with a minimum of plant 

alteration, the effluents from the stage will both be led to another sage identical in construction. 

The combination, two stages in series, is in effect a single stage. The combination, two stages or 

more in series, is in effect a single stage is a simple technique to improve the existing operation. In 

this work, we have presented a derivation that relates combined stage overall Murphree efficiency 

to individual stage efficiency.  
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I. INTRODUCTION  

 

In order to improve the performance of the staged operations with a minimum of plant alteration, 

the effluents from the stage will both be led to another sage identical in construction the 

combination, two stages in series, is in effect a single stage [1]. In this manner any numbers of 

stages have been recommended to connect in series. Ultimately we bring the flowing streams close 

to equilibrium [2]. The efficiencies of individual stage may be reported as Murphree stage 

efficiencies. This efficiency is defined as [3,4] the actual vapour stream enrichment over one stage 

divide by the theoretical vapour stream enrichment which would have been obtained if the liquid 

stream on the stage and vapours stream leaving the plate had reached equilibrium. Thus, if a vapour 

stream of composition ny  enters stage 1n  , the actual vapours evolved have a composition of 1ny  . 

If the evolved vapours had left the liquid on the stage 1n   under equilibrium conditions, the 

composition of the vapours stream would have been 

1ny . Therefore, the actual vapour stream 

enrichment is then 
n1n yy 
and the theoretically vapour stream enrichment is 

n1n yy 


 therefore 

Murphree stage efficiency for vapour stream for stage, 1n   , MEη  = 
n1n

n1n

yy

yy








  

There is another definition for stage efficiency which is defined as the ratio of actual enrichment to 

possible enrichment in a single stage. Therefore 

Stage efficiency for vapour stream for stage, 1n   , 
ne

n1n

yy

yy







  

In the following section a theoretical derivation has been derived to compute the overall Murphree 

stage efficiency, MEOη  from the individual efficiencies. 
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II. DERIVATION 

Solute free (i.e., mole ratios) coordinates are very useful in staged operation [1]. Mole ratios are 

usually designated by Y  and X, whereas mole fractions are designated by y and x  for vapour 

stream and liquid stream respectively. However, mole ratios are equal to mole fractions for very 

dilute systems. Hence mole ratios are used in the following derivation. 

Referring to Figure-I, when solute is transferred in a single stage. The following definitions are 

applicable. 

Murphree stage efficiency )(ηME is defined as 
12

12

YY

YY






;Efficiency  η  is defined as 
1e

12

YY

YY



  

Where subscripts 1 and 2 indicate inlet and outlet of a stage 

 

Figure-I. Single stage transfer 

Referring to Figure-II when solute is transferred in multistage. 

For stage one efficiency, 
1e

12

YY

YY
1 


 , 

For stage two efficiency, 
2e

23

YY

YY
2 


 and so on   for nth stage, 

ne

n1n

YY

YY




 

n
  

 

Figure-II. Multistage transfer 

Let several sages are combined in series as shown in Figure-II and assuming all are having equal 

efficiencies 

When two stages combined that is  


121e YY)Yη(Y                                                                                                                                   (1) 
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232e YY)Yη(Y                                                                                                                                  (2) 

Add Eq.  1  & Eq.  2  gives  

 2e1e23 YYYYηYY                                                                                                                         (3) 

Divide both sides by  1e YY   

  

















1e

2e

1

13

YY

YY
1

YY

YY

e

                                                                                                                                (4) 

We know 
1e

13

YY

YY
2 


                                                                                                                                (5) 

therefore  














1e

2e11

YY

YYYY
1

2


n
                                                                                                              (6) 

implies   η)(11
2





n

n                                                                                                                                    (7) 

Let three stages are combined  

Similarly   

















1e

3e2e1e

1

14

YY

YYYYYY
1

YY

YY

e

                                                                                            (8) 

We know 
1e

14

YY

YY
3 




n
                                                                                                                                 (9) 

  



















1e

3e

1e

2e

YY

YY

YY

YY
1

3


n
                                                                                                                         (10) 





















1e

311e

1e

211e

YY

YYYY

YY

YYYY
1

3


n
                                                                                                     (11) 

          2nη1η)(11   

          2ηη1η)(11 2   

          2η)(1η)(11                                                                                                                                     (12) 

So on when ‘n’ stage are combined 

  1n2 η)(1η)(1η)(11 



nn

                                                                                                (13) 

Where nnη   is called as overall efficiency when ‘n’ stages are combined. 

III.  Relation between MEη and η  

It is possible to derive a relation between MEη  and η  only when we establish a relation between 

them and it is possible only in a special case such as when equilibrium line and operating lines are 

straight lines. 
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Slope of the equilibrium line, 




 












22

22

e2

e2

2e

2e

XX

YY
(or)

XX

YY
(or)

XX

YY
m                                                           (14) 

 

Slope of operating line, 

e2

2e

e1

1e

21

12

s

s

XX

YY
(or)

XX

YY
(or)

XX

YY

E

R












                                                                        (15) 

We know 

12

12
ME

YY

YY
η







and 

1e

12

1e

12

XX

XX

YY

YY
η









                                                                                  (16) 

Therefore, MEη can be arranged in terms of η  as follows 

1
YY

YY

η

11
YY

YY

η

YY

YY

η

YY

)Yη(Y
η

1e

e2

1e

12

1e

1212

1e
ME
























                                                                  (17) 
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η
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)Xm(X
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s

s
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s

s
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

































ME


                                                                (18) 

We know 
1e

12

XX

XX




  therefore  

1e

e2

XX

XX
1




                                                                                               (19) 


  1η1

R

mE

η

s

s 


ME


                                                                                                                                       (20) 

factor stripping,
R

mE

s

sS   


  1η1S

η
ηME


                                                                                                                                               (21) 

Rearranging Eq.(21)  

1Sη

1)η(S
η

ME

ME




                                                                                                                                                          (22) 

The following examples illustrate how to use Eq.(21) and Eq.(22) in computing overall Murphee 

stage efficiency from individual Murphree stage efficiency 

Example: A single stage liquid-extraction operation with a linear equilibrium distribution curve (Y 

= m X at equilibrium) operates with a stripping factor S = m Es/Rs = 1.0 and has a Murphree stage 
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efficiency MEη = 0.6.  In order to improve the extraction with a minimum of plant alteration, the 

effluents from the stage will both be led to another sage identical in construction, also of efficiency 

MEη  = 0.6.  The combination, two stages in series, is in effect a single stage.  It is desired to 

compute the overall Murphree stage efficiency MEOη of the combination [2]. 

Solution: 

Given S = 1.0 and 6.0ηME    

Therefore 75.0
1Sη

1)η(S
η

ME

ME 



  

  9375.0η)(112  n  

 0.8824
1)ηS(1

η

2n

2n 






MEO

  

3. CONCLUSION 

A theoretical derivation has been presented to compute overall Murphree stage efficiency from 

individual stage efficiency. We have presented a model problem along with the calculations to 

calculate the overall efficiency from individual efficiency. Although the derivations for other cases 

are not present here, the same concept can be extended to absorption, stripping and adsorption. 
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