
Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 05 Issue: 02 December 2016 Page No.72-78

ISSN: 2278-2397

72

A Novel Prioritized Deciding Factor(PDF) Approach

for Directed Acyclic Graph(DAG) Based Test Case

Prioritization using Agile Testing Methodology

Alamelu Mangaiyarkarasi
1
, M.V.Srinath

2

1
Assistant Professor,

2
Director

1 2
Department of Master of Computer Applications,SengamalaThayaar Educational Trust Women’s College, Mannargudi

Email: vsalamu@gmail.com,sri_induja@rediffmail.com

Abstract-Software testing consumes one half of the total

developmental resources. Many testers understand that IT

management tries to save testing time, by giving them

unreasonable deadlines. If a scheduled information date has

been established, and dynamic testing can occur only after the

code is complete, testers feel pressure of that deadline. This

problem faced by many developers and testers till who are all

working in the old waterfall model. To overcome the problem

of time management of projects, many software industries

prefer agile methodology, in agile methodology all works are

divided into number of modules. Each module contains

decision making, planning, coding, testing, implementation,

and so on. Each module follows this process and integrates

with the previously completed module. Finally the entire work

will be integrated and the time duration of work is shorter than

other software development models. But testing occupies the

major part of the software development- the maximum time of

the allotted time is utilized in testing in agile also. The major

objective of this work is prioritization of test cases in Directed

Acyclic Graph (DAG) based model. For this purpose

introduced a new method named Prioritized Deciding

Factor(PDF). It is a value, this value is calculated from other

two processes such as Dependency value calculation and K-

shingles jaccard similarity and distance value calculation. This

paper describes about the prioritization of test cases based on

Prioritized Deciding Factor(PDF) value, reduce the execution

time of test cases, and increase the fault detection using

Average Percentage Fault Detection(APFD) method.

Keyword: Agile Methodology, Prioritized Deciding

factor(PDF), K-Shingles Jaccard Similarity, Dependency

value, Agile Testing , Time Management, Directed Acyclic

Graph(DAG), Average Percentage Fault Detection(APFD)

I.INTRODUCTION

Agile methodology is mainly adopted to increase software

development, reduce documentation, and satisfy customers

through continuous delivery of the product. Most of the

software companies only accept agile based projects because

the time duration is smaller than the waterfall model. Waterfall

model takes maximum time duration and changes will affect

the entire work- from the beginning till the end. However in

agile method, changes does not affect at any level. In agile

methodology, user interaction is most important at all the level

to produce the right product. Customers’ requirements are

added at any level instantly, and these requirements are created

as use cases i.e. user board story; these use cases are split into

many test cases. Agile testing involve all members of the cross

functional agile team to ensure the business values desired by

customer. It includes various methods, such as, Test Driven

Development(TDD), Feature Driven Development(FDD),

Extreme programming(XP), SCRUM, Crystal Clear (CC),

Dynamic Systems Development Method(DSDM),and so

on.,[1]. Depending upon the type of the testing, the tester

designs the test cases and the collection or set of many test

cases is known as Test Suite. Therefore, during the testing

phase, to perform the testing the tester can decides which test

case is going to test first, then executes the software with those

test cases, and then check and verifies the results produced by

the executions [2].Here we introduced a new method

Prioritized Deciding Factor(PDF). The main aim of this

method is prioritize the test cases based the Prioritized

Deciding Factor(PDF) value, the Prioritized Deciding

Factor(PDF) value calculated from the similarity and

dependency values. Through this Prioritized Deciding

Factor(PDF) value created test cases are prioritized, i.e. if the

Prioritized Deciding Factor(PDF) value is greater than 0 then

that value is considered and corresponding test cases are

selected for the prioritization process otherwise if the

Prioritized Deciding Factor(PDF) value is less than zero, it is

not selected and corresponding test cases are considered as a

fault node in the Directed Acyclic Graph (DAG) list.

A. Overall process of PDF Approach

Figure 1: Prioritization Deciding Factor(PDF) Approach

Figure 1 represents the overall process of the Prioritized

Deciding Factor(PDF) approach i.e. first of all we can take

input from mobile functions as use cases; remove the irrelevant

information through preprocessing; split the use cases into

number of test cases; find the similarity between the test cases;

from the similarity value we can calculate distance value

through subtraction from 1; calculate dependency value from

use cases; then, calculate Prioritized Deciding Factor(PDF)

value from similarity value and dependency value through

multiplication. If the Prioritized Deciding Factor(PDF) value

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 05 Issue: 02 December 2016 Page No.72-78

ISSN: 2278-2397

73

is greater than or equal to zero, then those test cases are

selected for the process of prioritization, unless the test cases

are removed from the list. Finally, the selected test cases are

prioritized by ranking of Prioritized Deciding Factor(PDF)

value in ascending order.

In Section II, we discuss about preprocessing. The main aim of

preprocessing is to remove unnecessary and irrelevant test

cases before code writing. In section III, we discuss the process

of finding the dependency value between test cases. In section

IV, we describe the calculation of similarity value between test

cases. In section V, we discuss the calculation of Prioritized

Deciding Factor(PDF) value from dependency value and

similarity value, and last, we discuss as to how to prioritize the

test cases based on the Prioritized Deciding Factor(PDF) value.

II. RELATED WORK

ThillaikarasiMuthusamy et al., suggested a new regression test

suite prioritization algorithm that prioritizes the test cases, with

the goal of maximizing the number of faults that are likely to

be found during the constrained execution [2]. Chunrong Fang

et Al., suggested a technique that follows ordered sequences of

program entities to improve the effectiveness of test case

prioritization. The execution frequency profiles of test cases

are collected and transformed into ordered sequences. We

propose several novel similarity-based test case prioritization

techniques based on the edit distances of ordered sequences

[4].

SiripongRoongruangsuwan et al., suggested two new efficient

prioritization methods to address the above issues. The first

method aims to resolve the problem of many test cases

assigned with the same weight values. The second method is

developed to effectively prioritize multiple suites. [7].

EktaKhandelwal et al., suggested and reviewed the various

techniques for test cases prioritization and the various factors

responsible for classification of the techniques. All algorithms

have their own field of use [3].Sahil Gupta et al., suggested

prioritizing test cases, in order to maximize the number of

faults. We introduce two criterions on the basis of which we

determine a factor which is used to prioritize test cases. After

that, the Average percentage of Fault detection (APFD) metric

is evaluated such that it is increased as compared to the non –

prioritized order. [8]. Vivekananda ReddyD et Al.,

suggested that the main objective of the proposed method is to

implement an effective software testing process without

discarding the provided test cases. [9].

Kavitha R and SureshkumarN suggestedan algorithm to

prioritize test cases based on the rate of fault detection and

fault impact. The proposed algorithm identifies the severe fault

at earlier stage of the testing process and the effectiveness of

prioritized test case, and comparison of it with un-prioritized

ones with the help of Average percentage of Fault detection

(APFD)[10]. Praveen RanjanSrivastava suggested one of the

performance goals i.e. the fault detection rate, is a measure of

how quickly faults are detected during the testing process and

presents a new test case prioritization algorithm, which

calculates average faults found per minute. It presents the

results illustrating the effectiveness of algorithm with the help

of Average percentage of Fault detection (APFD) metric. The

main aim is to determine the effectiveness of prioritized and

non-prioritized case with the help of Average percentage of

Fault detection (APFD) [11].

III. PROPOSED WORK

In this proposed work, there are number of processes that

would be performed step by step for the prioritization process.

Here, prioritization is the main aim of this proposed work and

the processes are as follows:

Step1.Preprocessing

Step2.Similarity value calculation

Step3.Distance value calculation

Step4.Dependency value calculation

Step5.Prioritized Deciding Factor(PDF) Value calculation

Step6.Prioritization of test cases

Step7.Directed Acyclic Graph (DAG) representation

Step1. Preprocessing

The initial process of this proposed work is preprocessing. This

method is used to remove irrelevant information from the raw

data. Here we can take the inputs from the game applications.

It is an unstructured data, i.e raw data. The raw data may

contain more irrelevant information. From this raw data, we

need to define the structured data, such as use cases. Use cases

means user board story, which contains number of test cases.

The table shows the list of use cases[14],

Table 1 List of Use Cases

Table 1 represents use cases about mobile functions such as

check for background music and sound effects, user interface

and multimedia and so on. These are all considered as use

cases. After preprocessing the use cases are split into number

of test cases. Then all test cases and use cases are identified

by unique numbers, such as 1, 2, and so on.

Table 2 List of Use cases and Test cases with Unique

Identification

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 05 Issue: 02 December 2016 Page No.72-78

ISSN: 2278-2397

74

The table 2 represents, use case 1 , i.e. check for background

music and sound effects is the first use case and it contains 5

test cases, i.e. on/off sound background, receive the call and

check, and so on. All the listed test cases are related to use case

‘check for background music and sound effects’ i.e. use case 1.

Step2. Similarity Value Calculation

Similarity is a complex concept which has been widely

discussed in the linguistic, philosophical, and information

theory communities [12]. Similarity means a process to find

the same type of words, sentences, and so on. To calculate

similarity value, here we consider two test cases[4]. Each sets

are delimited by separator like comma. Now each test cases

contains number of words, first test case considered as i and

second test case considered as i+1 or j ,i.e., i=1 and j=i+1. Each

use case contains n number of test cases; here, use case 1

contain 5 test cases, and the first test case 1 compares with test

case 2 i.e. 12,13 up to 45, however, this process is not

necessary for reverse process. Here, we use a method to find

the similarity between the test cases named jaccard similarity

and k-shingles. The formula for this method is

JS (T1, T2) = … (1)

Experiment 1:

Test case 1=on/off, sound,&,background,music

Test case 2=receive, the, call, and, check

The Equation 1 Represented as

Sim(1,2)

 = =0

Experiment 2:

Test case 1=on/off, sound,&,background,music

Test case 3= Verify if sound effects are in sync

Sim(1,3)

=

 = =0.7143

Step3.Distance value Calculation

The distance value is used to find the shortest distance between

the nodes. The threshold of distance is 1. The distance is

calculated from the similarity value i.e. similarity value

subtracted by 1. That result value is considered as a distance

value. The formula for the distance value calculation is

Distance value=1- Similarity value …..(2)

Experiments:

The Equation 2 follows as

D1= 1-0=1

D2=1-0.077= 0.923

D3=1-0.1=0.9

Table 3 represents calculation of the similarity between test

case 1 and test case 2, and similarity between test case 1 and

test case 3 and so on. Then the distance value is calculated

from the similarity value i.e. similarity value subtracted by 1.

Here, the distance value is only used to represent Directed

Acyclic Graph (DAG) for the valid test cases, and is not used

for prioritization process.

Table 3: Distance Value

Step4.Dependency value Calculation

The dependency value is calculated by the average value of the

number of test cases. The purpose of dependency value is to

prioritize the test cases based on the use cases. Each use cases

contain number of test cases. These test cases are one to one

interrelated. The formula for the dependency calculation is

…..(3)

Where UCn means Number of Use casesTCn means number of

Test casesThe Equation 3 represented as follows

Experiment 1:

UID-1=TID1+TID-2+TID-3+TID-4

+TID-5=5

UID-1= =0.25

Experiment 2:

UID-2=TID-6+TID-7+TID-8+TID-9+TID-10+TID-11+TID-

12+TID-13+TID-14+TID-15+TID-16+TID-17

UID-2= =0.0833

Table 4 Dependency Value

Table 4 represents the dependency value of test cases. 1

divided by the number of test cases are considered as the

dependency value of each use cases. The first uses case

contains 5 test cases, and then the dependency value of use

case 1 is 0.2 i.e. and so on.

Step5. Calculation of Prioritized Deciding Factor(PDF)
The prioritized deciding factor (PDF) is a new approach to

optimize the prioritization process. In software development

lifecycle, testing is an important portion, the testing process

occupy half of the allotted time. The main aim of the

prioritized deciding factor (PDF) is to reduce the testing time

of testers. The algorithm for the prioritized deciding factor

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 05 Issue: 02 December 2016 Page No.72-78

ISSN: 2278-2397

75

(PDF) approach is Algorithm for Prioritized Deciding

Factor(PDF)

Inputs:

Computed Similarity, Distance & Dependency

values

Output:

 Prioritized Test Cases

Begin

For each x

 For all

 TList add(

 For each

 Compute PDF ()

If (PDF () > 0)

Add () Res ()

End

End For

End For

End For

For each ()List()

Compute =

ResultProduce (Pr ())

End for

End

The formula of the Prioritized Deciding Factor(PDF) approach

is

Prioritized Deciding Factor(PDF) value=similarity value X

dependency value . ………..(4)

The algorithm represents the use cases, which are separated

from the test cases and added to the TList. Then compute

Prioritized Deciding Factor(PDF) value from similarity and

dependency values. If Prioritized Deciding Factor(PDF) value

is greater than zero, then the test cases are selected to the

prioritization list, otherwise it is considered as false node in the

Directed Acyclic Graph(DAG) representation and removed

from the list. And then the duplicated nodes are removed from

the list and provide rank for the selected Prioritized Deciding

Factor(PDF) values. The ranking provided is based on the

Prioritized Deciding Factor(PDF) value in ascending. After

that, the test cases are prioritized based on the Prioritized

Deciding Factor(PDF) value.

The Equation 4 represented as

Experiment 1:

Prioritized Deciding Factor(PDF) value=0X0.20000

=0.00000

Experiment 2:

Prioritized Deciding Factor(PDF) value

= 0.07143X0.08333

=0.1429

Table 5 represents the calculation of Prioritized Deciding

Factor(PDF) value, the Prioritized Deciding Factor(PDF)

value is found from multiplication of similarity value and

dependency value, from this new process a set of values are

calculated. Here Similarity value of test case 1 2 is 0 because

no words are match, and the dependency value of use case 1 is

0.2,then the multiplication of 0 *0.20 is 0and so on. According

to this process, the test cases are short listed, i.e which

Prioritized Deciding Factor(PDF) value is greater than or equal

to zero, that value and test cases only selected and prioritized.

Here we consider the first node i.e test case 12 of Prioritized

Deciding Factor(PDF) value is 0, so it is not selected for the

prioritization process, likewise, whose value is less than zero

that node should be removed from the list of test cases, which

is considered as FALSE node.

Table 5: Prioritized Deciding Factor(PDF) value with

similarity, dependency

Step6. Prioritization of test cases

The test cases are prioritized based on the Prioritized Deciding

Factor(PDF) value. If the Prioritized Deciding Factor(PDF)

value is >= 0 then the test cases are considered for the

prioritization process otherwise it will be removed from the

list. First, we need to merge the Prioritized Deciding

Factor(PDF) value with valid nodes. Then, prioritize the test

cases based on the prioritized deciding factor (PDF) value. In

step 6 include the following process.

Duplicate removal

This process is removing the replication of test cases. For

example the Prioritized Deciding Factor(PDF) value of 13

and 14 are 0.0077 and 0.1 respectively. Here 1 occurs two

times. Any test cases can occur one time in the list. According

to this process, there are 54 test cases that are selected from the

full list without duplication.

Ranking the test cases based on PDF value

The selected Prioritized Deciding Factor(PDF) value and

corresponding test cases are ordered by ranking based on

Prioritized Deciding Factor(PDF) value from the highest to the

smallest. In this method, the Prioritized Deciding Factor(PDF)

value in not unique, i.e. the same value for more than test cases

will create some confusion during the priority process.

Prioritization of test cases based on PDF value

Here, the test cases are ranked based on Prioritized Deciding

Factor(PDF) value, but in the prioritization. The same values

are avoided up to the next round selection. For these, the

repetition should be avoided.

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 05 Issue: 02 December 2016 Page No.72-78

ISSN: 2278-2397

76

Table 6 represents the prioritized test case based on the

Prioritized Deciding Factor(PDF) value, if Prioritized

Deciding Factor(PDF) is >=0 then the test case is selected for

prioritization, otherwise the test case would be removed from

the list of test cases. A simple method is only applied. Here,

the Prioritized Deciding Factor(PDF) value is ordered in

ascending order. Based on the Prioritized Deciding

Factor(PDF) ascending, the test cases are arranged.

Table 6 The prioritized test cases are shown in the table

Step7. Directed Acyclic Graph(DAG) Representation

The Directed Acyclic Graph(DAG) is a graph to represent the

distance between the nodes; the link follow from one node to

another in forward. Here, the backward process is not

necessary in Directed Acyclic Graph(DAG) representation.

Here, the test cases are nodes. We can start the process from

first test case; however, false nodes are not considered in the

list.

Table 7 Use case 1 and Use case 2 valid nodes are shown

Directed Acyclic Graph(DAG) Representation

Fig 2. Directed Acyclic Graph(DAG)for use case 1

V. RESULT AND DISCUSSION

This section describes t the performance analysis of the

prioritized deciding factor (PDF) approach for the following

metric,The implementation of the prioritized deciding factor

(PDF) is done in the platform of PHP 5.5.12 and

MYSQL5.6.17. The sample screens are

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 05 Issue: 02 December 2016 Page No.72-78

ISSN: 2278-2397

77

Fig.3 Sample screens of proposed work Prioritized Deciding

Factor(PDF)

Fault Detection Using Average percentage of Fault

detection

Average percentage of Fault detection (APFD) is a

standardized metric that is used to find the degree of faults

detected. It depends upon the fault criterion considered.

Average percentage of Fault detection (APFD) is computed to

measure the rate fault detection of coverage based on

prioritization techniques. Average percentage of Fault

detection (APFD) measures the weighted average of the

percentage of faults detected over the life of a test suite.

Average percentage of Fault detection (APFD) values ranges

from 0 to 100, higher number simply faster faults detection

rates [6][10].

Table 8 : shows no of faults and execution time and

Prioritized Deciding Factor(PDF) value of test cases

Average percentage of Fault detection (APFD)

=1- + …..(4)

Generally test cases to be executed in run time, during the

execution there are many faults may occur ,these faults such as

syntax error, technical error ,input error, et., to find that error

and find the execution time of test cases using Average

percentage of Fault detection (APFD) method[11][5][2].

Table 8 represents the faults of each test case and Prioritized

Deciding Factor(PDF) values for the Test cases, consider 10

test cases for fault detection, the following table shows the no

of faults and the time taken for each test cases

Non prioritized test cases are in order among 80 first 10 test

cases only considered

T1,T2,T3,T4,T5,T6,T7,T8,T9,T10

Average percentage of Fault detection (APFD)

= 1-5+1+5+2+4+4+4+3+4+3/10*10+1/2*10

= 0.60

Prioritized test case in the order among 80 test cases, first 10

only considered here

T6,T9,T10 T8,T3,T1,T2,T7,T5,T4

Average percentage of Fault detection (APFD) = 1-

5+2+4+1+2+3+3+3+2+1/10*10+1/2*10

= 1-0.27+0.05

= 1-0.32

= 0.68

Fig.4 Graph for fault detection rate

Figure 4 represents the fault detection rate in graph, in x axis-

percentage of fault detection, and in y axis- test case type i.e.

prioritized and non-prioritized. According to the graph,

prioritized test case fault detection rate is higher than non

prioritized test case fault detection rate.

Execution Time of Test Cases

The execution time of test cases are calculated from the

following formula [13]

T.E.T= E.T * NO OF TEST CASES * PERIOD / 8

E.T=3 milli seconds /TC

Number of TC=80

Period of ROI=3 months

=3*80*3/8

=90 ms

=0.09 seconds

Compared with other existing algorithms, this method is better

in time execution of test cases. It takes totally 0.09 seconds

only to execute 80 test cases.

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 05 Issue: 02 December 2016 Page No.72-78

ISSN: 2278-2397

78

Fig.5.Graph for execution time of test cases

Figure 5 represents the execution time of test cases, Here,

existing test cases takes 120 milli seconds for 80 test cases i.e.

57% and proposed 90 milli second is taken for 80 test cases i.e.

43% only, therefore the execution time of this proposed work

is lesser than the existing work.

VI. CONCLUSION

This paper proposes an algorithm for test case prioritization

using Prioritized Deciding Factor(PDF) method i.e. Prioritized

Deciding Factor. The main aim of the proposed work is

minimize test cases, reduce the testing time and detect faults in

the test cases during execution. Before the calculation of

Prioritized Deciding Factor(PDF), we need to compute

similarity, distance, and dependency values. The dependency

values are computed from use cases. This value is used to

make the prioritization process easy. The PDF value is

calculated from the similarity and dependency values. The

Prioritized Deciding Factor(PDF) based test case prioritization

is better than the existing method. To calculate Fault rate,

Average percentage of Fault detection (APFD) metric is also

applied to detect faults and improve the fault detection rate.

The performance analysis of Average percentage of Fault

detection (APFD) is better than the existing method. The

execution time of test cases is calculated, and those results are

also better than the existing method. In future, this work will

be implementing in all type of applications. The development

of applications are increasing day by day, due to the needs of

users. The Prioritized Deciding Factor(PDF) method will help

to the users to reduce the time of work and faults will be

detected in an easy way.

References

[1] AlameluMangaiyarkarasi V, Dr. Srinath M V and

Dr.Omar A Allhayasat. “A Survey on Agile Software

Testing Mechanism with Directed Ascyclic Graph (DAG)

Based Model in Various Platform,” Australian Journal of

Basic and Applied Sciences, Vol. 8, No. 3, pp. 266-273,

2014.

[2] Thillaikarasi M and Seetharaman K, “Test Case

Prioritization Techniques on Regression Testing,”

International Journal of Innovative Research in

Technology & Science (IJIRTS), Volume-2 Issue-

6:Published On November 30,2014

[3] EktaKhandelwal and MadhulikaBhadauria, “Various

Techniques Used for Prioritization of Test Cases,”

International Journal of Scientific and Research

Publications, Vol.3, No. 6, ISSN 2250-3153,june 2013,

[4] Fang, C., Chen, Z., Wu, K. et al., “Similarity-Based Test

Case Prioritization Using Ordered Sequences of Program

Entities.”. Software Qual J (2014) 22: 335.

doi:10.1007/s11219-013-9224-0

[5]. Pradeepa R and Vimala Devi K. “Effectiveness of Test

Case Prioritization Using AFD Metric:

Survey”,International Conference on Research Trends in

Computer Technologies (ICRTCT - 2013) Proceedings

published in International Journal of Computer

Applications® (IJCA) (0975 – 8887)

[6]Anil Mor, “Evaluate the Effectiveness of Test Suite

Prioritization Techniques Using APFD Metric,” IOSR

Journal of Computer Engineering, Vol. 16, No.4, pp. 47-

5, 2014

[7]` SiripongRoongruangsuwan and JirapunDaengdej. “Test

Case Prioritization Techniques,” Journal of Theoretical

and Applied Information technology.,Vol.18,No.2, 2010.

[8] Sahil Gupta, HimanshiRaperia, EshanKapur, Harshpreet

Singh and Aseem Kumar. “A Novel approach for Test

Case Prioritization,” International Journal of Computer

Science, Engineering and Applications, Vol. 2, No. 3,

2012

[9] Vivekananda Reddy D and Rama Mohan Reddy A. “An

Approach for Fault Detection in Software Testing

Through Optimized Test Case Prioritization,”

International Journal of Applied Engineering Research,

Vol. 11, No. 1, pp. 57-63, 2016.

[10] Kavitha R and Sureshkumar N. “Test Case

Prioritization for Regression Testing Based on Severity

of Fault,” (IJCSE) International Journal on Computer

Science and Engineering, Vol. 2, No. 05, pp. 1462-

1466, 2010,.

[11] Praveen RanjanSrivastava. “Test Case Prioritization,”

Journal of Theoretical And Applied Information

Technology,vol. 4 (3), 178-181,2008.

[12] VasileiosHatzivassiloglou, Judith L Klavans, Melissa L.

Holcombe, Regina Barzilay, Min-Yen Kan, and

Kathleen R. McKeown. “SIMFINDER: A Flexible

Clustering Tool for Summarization.” published in in

proceedings of the naacl workshop on automatic

summarization,2001

[13] http://www.testing-whiz.com/blog/how-to-calculate-roi-

for-test

[14] AlameluMangiyarkarasi V, Dr. Srinath M V,An

efficient DAGbM-KSJS algorithms for agile software

testing,international review on computers and software,

ISSN:1828-6003, e-ISSN: 1828-6011.

