Integrated Intelligent Research (1IR)

International Journal of Computing Algorithm
Volume: 05 Issue: 02 December 2016 Page No.72-78
ISSN: 2278-2397

A Novel Prioritized Deciding Factor(PDF) Approach
for Directed Acyclic Graph(DAG) Based Test Case
Prioritization using Agile Testing Methodology

Alamelu Mangaiyarkarasi', M.V.Srinath?
! Assistant Professor,’Director
12Department of Master of Computer Applications,SengamalaThayaar Educational Trust Women’s College, Mannargudi
Email: vsalamu@gmail.com,sri_induja@rediffmail.com

Abstract-Software testing consumes one half of the total
developmental resources. Many testers understand that IT
management tries to save testing time, by giving them
unreasonable deadlines. If a scheduled information date has
been established, and dynamic testing can occur only after the
code is complete, testers feel pressure of that deadline. This
problem faced by many developers and testers till who are all
working in the old waterfall model. To overcome the problem
of time management of projects, many software industries
prefer agile methodology, in agile methodology all works are
divided into number of modules. Each module contains
decision making, planning, coding, testing, implementation,
and so on. Each module follows this process and integrates
with the previously completed module. Finally the entire work
will be integrated and the time duration of work is shorter than
other software development models. But testing occupies the
major part of the software development- the maximum time of
the allotted time is utilized in testing in agile also. The major
objective of this work is prioritization of test cases in Directed
Acyclic Graph (DAG) based model. For this purpose
introduced a new method named Prioritized Deciding
Factor(PDF). It is a value, this value is calculated from other
two processes such as Dependency value calculation and K-
shingles jaccard similarity and distance value calculation. This
paper describes about the prioritization of test cases based on
Prioritized Deciding Factor(PDF) value, reduce the execution
time of test cases, and increase the fault detection using
Average Percentage Fault Detection(APFD) method.

Keyword: Agile Methodology, Prioritized Deciding
factor(PDF), K-Shingles Jaccard Similarity, Dependency
value, Agile Testing , Time Management, Directed Acyclic

Graph(DAG), Average Percentage Fault Detection(APFD)

I.INTRODUCTION

Agile methodology is mainly adopted to increase software
development, reduce documentation, and satisfy customers
through continuous delivery of the product. Most of the
software companies only accept agile based projects because
the time duration is smaller than the waterfall model. Waterfall
model takes maximum time duration and changes will affect
the entire work- from the beginning till the end. However in
agile method, changes does not affect at any level. In agile
methodology, user interaction is most important at all the level
to produce the right product. Customers’ requirements are
added at any level instantly, and these requirements are created
as use cases i.e. user board story; these use cases are split into
many test cases. Agile testing involve all members of the cross
functional agile team to ensure the business values desired by

72

customer. It includes various methods, such as, Test Driven
Development(TDD), Feature Driven Development(FDD),
Extreme programming(XP), SCRUM, Crystal Clear (CC),
Dynamic Systems Development Method(DSDM),and so
on,[1]. Depending upon the type of the testing, the tester
designs the test cases and the collection or set of many test
cases is known as Test Suite. Therefore, during the testing
phase, to perform the testing the tester can decides which test
case is going to test first, then executes the software with those
test cases, and then check and verifies the results produced by
the executions [2].Here we introduced a new method
Prioritized Deciding Factor(PDF). The main aim of this
method is prioritize the test cases based the Prioritized
Deciding Factor(PDF) value, the Prioritized Deciding
Factor(PDF) value calculated from the similarity and
dependency values. Through this Prioritized Deciding
Factor(PDF) value created test cases are prioritized, i.e. if the
Prioritized Deciding Factor(PDF) value is greater than O then
that value is considered and corresponding test cases are
selected for the prioritization process otherwise if the
Prioritized Deciding Factor(PDF) value is less than zero, it is
not selected and corresponding test cases are considered as a
fault node in the Directed Acyclic Graph (DAG) list.

A. Overall process of PDF Approach

e

Input (test cases of

Preprocess the test
mobile garme app)

cases

Find the similarity
batween tast cases

Calculate d
value from the no of

Calculate PDF value

(sim*dep) test cases of uses cases

POF
value

Remave

Test case

d from
list

selected for

Ranking

prioritization

based on POF ranking
Figure 1: Prioritization Deciding Factor(PDF) Approach

Figure 1 represents the overall process of the Prioritized
Deciding Factor(PDF) approach i.e. first of all we can take
input from mobile functions as use cases; remove the irrelevant
information through preprocessing; split the use cases into
number of test cases; find the similarity between the test cases;
from the similarity value we can calculate distance value
through subtraction from 1; calculate dependency value from
use cases; then, calculate Prioritized Deciding Factor(PDF)
value from similarity value and dependency value through
multiplication. If the Prioritized Deciding Factor(PDF) value

Integrated Intelligent Research (1IR)

is greater than or equal to zero, then those test cases are
selected for the process of prioritization, unless the test cases
are removed from the list. Finally, the selected test cases are
prioritized by ranking of Prioritized Deciding Factor(PDF)
value in ascending order.

In Section 11, we discuss about preprocessing. The main aim of
preprocessing is to remove unnecessary and irrelevant test
cases before code writing. In section I11, we discuss the process
of finding the dependency value between test cases. In section
IV, we describe the calculation of similarity value between test
cases. In section V, we discuss the calculation of Prioritized
Deciding Factor(PDF) value from dependency value and
similarity value, and last, we discuss as to how to prioritize the
test cases based on the Prioritized Deciding Factor(PDF) value.

1. RELATED WORK

ThillaikarasiMuthusamy et al., suggested a new regression test
suite prioritization algorithm that prioritizes the test cases, with
the goal of maximizing the number of faults that are likely to
be found during the constrained execution [2]. Chunrong Fang
et Al., suggested a technique that follows ordered sequences of
program entities to improve the effectiveness of test case
prioritization. The execution frequency profiles of test cases
are collected and transformed into ordered sequences. We
propose several novel similarity-based test case prioritization
techniques based on the edit distances of ordered sequences

[4].

SiripongRoongruangsuwan et al., suggested two new efficient
prioritization methods to address the above issues. The first
method aims to resolve the problem of many test cases
assigned with the same weight values. The second method is
developed to effectively prioritize multiple suites. [7].
EktaKhandelwal et al., suggested and reviewed the various
techniques for test cases prioritization and the various factors
responsible for classification of the techniques. All algorithms
have their own field of use [3].Sahil Gupta et al., suggested
prioritizing test cases, in order to maximize the number of
faults. We introduce two criterions on the basis of which we
determine a factor which is used to prioritize test cases. After
that, the Average percentage of Fault detection (APFD) metric
is evaluated such that it is increased as compared to the non —
prioritized order. [8]. Vivekananda ReddyD et Al,
suggested that the main objective of the proposed method is to
implement an effective software testing process without
discarding the provided test cases. [9].

Kavitha R and SureshkumarN suggestedan algorithm to
prioritize test cases based on the rate of fault detection and
fault impact. The proposed algorithm identifies the severe fault
at earlier stage of the testing process and the effectiveness of
prioritized test case, and comparison of it with un-prioritized
ones with the help of Average percentage of Fault detection
(APFD)[10]. Praveen RanjanSrivastava suggested one of the
performance goals i.e. the fault detection rate, is a measure of
how quickly faults are detected during the testing process and
presents a new test case prioritization algorithm, which
calculates average faults found per minute. It presents the
results illustrating the effectiveness of algorithm with the help
of Average percentage of Fault detection (APFD) metric. The

73

International Journal of Computing Algorithm

Volume: 05 Issue: 02 December 2016 Page No.72-78

ISSN: 2278-2397

main aim is to determine the effectiveness of prioritized and

non-prioritized case with the help of Average percentage of
Fault detection (APFD) [11].

1. PROPOSED WORK

In this proposed work, there are number of processes that
would be performed step by step for the prioritization process.
Here, prioritization is the main aim of this proposed work and
the processes are as follows:

Stepl.Preprocessing

Step2.Similarity value calculation

Step3.Distance value calculation

Step4.Dependency value calculation

Step5.Prioritized Deciding Factor(PDF) Value calculation

Step6.Prioritization of test cases

Step7.Directed Acyclic Graph (DAG) representation

Stepl. Preprocessing

The initial process of this proposed work is preprocessing. This
method is used to remove irrelevant information from the raw
data. Here we can take the inputs from the game applications.
It is an unstructured data, i.e raw data. The raw data may
contain more irrelevant information. From this raw data, we
need to define the structured data, such as use cases. Use cases
means user board story, which contains number of test cases.
The table shows the list of use cases[14],

Table 1 List of Use Cases

SMNo | Tlse casas

1. Chaclc for baclkoroumnd mpesic and sound
affacts on'off sonnd & baclcground mzsic

2. Checls for backsrovmi mpsic and sound
sffects=#Receive the call and checlc

3. Checls for backsrovmnd muosic and sound
aeffactsFvern fiv if soopnd =ffects are in swoe
with action

£ Checls for backsrovmi mpsic and sound
seffects*on'cff dewvice socvnd{nmabi~= socuvndd
and checlc

5. CTheck for backesrouvmnd mosic and sound
=ffactsffcheck for vibmtion effect i f pressnt

G TTzer interfacefrhecls in landscape postrait
mode

7. TTser interfacescheck ammation movement
of character graphics moom iruioast {all
EisEabEres)

Table 1 represents use cases about mobile functions such as
check for background music and sound effects, user interface
and multimedia and so on. These are all considered as use
cases. After preprocessing the use cases are split into number
of test cases. Then all test cases and use cases are identified
by unique numbers, such as 1, 2, and so on.

Table 2 List of Use cases and Test cases with Unique
Identification

UD | USECASE TID» TESTCASE

1 Checl for 1 On/off sound and
baclceround baclrosnd mwsic
rmsic and sound

1 Checl for 2 Fecaive the call
baclceround and chaclc
mmsic and sound

1 Checlc for 3 W erify if sound
baclceround effects ars in s mc
mmsic and sound with acton

1 Check for 4 On/off device
baclceround sound{natve
music and sownd sound) and chaclc

1 Checl for 5 Checl for
baclceronnd wibration effect if
mmesic and sound present

Integrated Intelligent Research (1IR)

The table 2 represents, use case 1, i.e. check for background
music and sound effects is the first use case and it contains 5
test cases, i.e. on/off sound background, receive the call and
check, and so on. All the listed test cases are related to use case
‘check for background music and sound effects’ i.e. use case 1.

Step2. Similarity Value Calculation

Similarity is a complex concept which has been widely
discussed in the linguistic, philosophical, and information
theory communities [12]. Similarity means a process to find
the same type of words, sentences, and so on. To calculate
similarity value, here we consider two test cases[4]. Each sets
are delimited by separator like comma. Now each test cases
contains number of words, first test case considered as i and
second test case considered as i+1 or j ,i.e., i=1 and j=i+1. Each
use case contains n number of test cases; here, use case 1
contain 5 test cases, and the first test case 1 compares with test
case 2 i.e. 122,1->3 up to 4->5, however, this process is not
necessary for reverse process. Here, we use a method to find
the similarity between the test cases named jaccard similarity
and k-shingles. The formula for this method is

[TinTT)
[T1UTT)

JS(T1,T2) = (1)

Experiment 1:
Test case 1=on/off, sound,&,background,music
Test case 2=receive, the, call, and, check
The Equation 1 Represented as
Sim(1,2)
L3

O - - - . - . - -
[msnuﬂd_&.,m:frqgrn-ur!r.'_rr.u.BLf,rereu:e_rr:e,fcu.gcr!d_rr:ernj

o
=—=0
i}

Experiment 2:
Test case 1=on/off, sound,&,background,music
Test case 3= Verify if sound effects are in sync
Sim(1,3)

[ownd}

[%snunr.'_&bcrkgr’nuﬂd_mminuer[ﬁ'_L'_,r'_e,r',r'errs_:re_ir!_.u'r!r;
1

:E:0'7143
Step3.Distance value Calculation
The distance value is used to find the shortest distance between
the nodes. The threshold of distance is 1. The distance is
calculated from the similarity value i.e. similarity value
subtracted by 1. That result value is considered as a distance
value. The formula for the distance value calculation is
Distance value=1- Similarity value
Experiments:
The Equation 2 follows as
D1=1-0=1
D2=1-0.077=0.923
D3=1-0.1=0.9

Table 3 represents calculation of the similarity between test
case 1 and test case 2, and similarity between test case 1 and
test case 3 and so on. Then the distance value is calculated
from the similarity value i.e. similarity value subtracted by 1.
Here, the distance value is only used to represent Directed

74

International Journal of Computing Algorithm

Volume: 05 Issue: 02 December 2016 Page No.72-78

ISSN: 2278-2397

Acyclic Graph (DAG) for the valid test cases, and is not used
for prioritization process.

Table 3: Distance Value

Start End Simlarity | Distance
Node Node
1 2 0 1
1 3 0.07143 0928
1 4 0.09051 0.8
1 5 0 1
o 3 0 I
2 E 0.18132 0.5IRIE
2 5 0 1
3 4 0 1
3 5 0.06667 0.9333
4 5 0 1

Step4.Dependency value Calculation

The dependency value is calculated by the average value of the
number of test cases. The purpose of dependency value is to
prioritize the test cases based on the use cases. Each use cases
contain number of test cases. These test cases are one to one
interrelated. The formula for the dependency calculation is
L UCh=1/3%,TCn...(3)

Where UCn means Number of Use casesTCh means number of
Test casesThe Equation 3 represented as follows

Experiment 1:
UID-1=TID1+TID-2+TID-3+TID-4
+TID-5=5

1

Ul D-1:g20.25

Experiment 2:
UID-2=TID-6+TID-7+TID-8+TID-9+TID-10+TID-11+TID-
12+TID-13+TID-14+TID-15+TID-16+TID-17
UID-2=-=0.0833

Table 4 Dependency Value

g
B

TID count Depend ency
020000
0083333
050000
016667
050000
1.00:000
1.00:000
033333
033333

023000

¥

=
b

el I T LT R L

EE (PRI [V] IS R] -)

[
=

Table 4 represents the dependency value of test cases. 1
divided by the number of test cases are considered as the
dependency value of each use cases. The first uses case
contains 5 test cases, and then the dependency value of use
case 1is 0.2 i.e. and so on.

Step5. Calculation of Prioritized Deciding Factor(PDF)

The prioritized deciding factor (PDF) is a new approach to
optimize the prioritization process. In software development
lifecycle, testing is an important portion, the testing process
occupy half of the allotted time. The main aim of the
prioritized deciding factor (PDF) is to reduce the testing time
of testers. The algorithm for the prioritized deciding factor

Integrated Intelligent Research (1IR)

(PDF) approach is Algorithm for Prioritized Deciding
Factor(PDF)

Inputs:
Computed Similarity, Distance & Dependency
values
Output:
Prioritized Test Cases

Begin

For each x€UC;
For all TC,, where m =1,2,..N
TList& add(TC;)
For each T; from Tlist,
Compute PDF (T;.T;)

If (PDF (T..T;) > 0)

Add (T;. T;) >Res (UC;)

End

End For

End For

End For

For each (T T;) € List(UC;)

Compute D pyi, =Pr(PDF (T; T,))

Result&Produce (Pr (T;. T;))

End for
End

The formula of the Prioritized Deciding Factor(PDF) approach
is

Prioritized Deciding Factor(PDF) value=similarity value X
dependency value .

The algorithm represents the use cases, which are separated
from the test cases and added to the TList. Then compute
Prioritized Deciding Factor(PDF) value from similarity and
dependency values. If Prioritized Deciding Factor(PDF) value
is greater than zero, then the test cases are selected to the
prioritization list, otherwise it is considered as false node in the
Directed Acyclic Graph(DAG) representation and removed
from the list. And then the duplicated nodes are removed from
the list and provide rank for the selected Prioritized Deciding
Factor(PDF) values. The ranking provided is based on the
Prioritized Deciding Factor(PDF) value in ascending. After
that, the test cases are prioritized based on the Prioritized
Deciding Factor(PDF) value.

The Equation 4 represented as

Experiment 1:
Prioritized Deciding Factor(PDF) value=0X0.20000
=0.00000

Experiment 2:

Prioritized Deciding Factor(PDF) value
=0.07143X0.08333

=0.1429

Table 5 represents the calculation of Prioritized Deciding
Factor(PDF) value, the Prioritized Deciding Factor(PDF)
value is found from multiplication of similarity value and

International Journal of Computing Algorithm
Volume: 05 Issue: 02 December 2016 Page No.72-78
ISSN: 2278-2397
dependency value, from this new process a set of values are
calculated. Here Similarity value of test case 1> 2 is 0 because
no words are match, and the dependency value of use case 1 is
0.2,then the multiplication of 0 *0.20 is Oand so on. According
to this process, the test cases are short listed, i.e which
Prioritized Deciding Factor(PDF) value is greater than or equal
to zero, that value and test cases only selected and prioritized.
Here we consider the first node i.e test case 1->2 of Prioritized
Deciding Factor(PDF) value is 0, so it is not selected for the
prioritization process, likewise, whose value is less than zero
that node should be removed from the list of test cases, which
is considered as FALSE node.

Table 5: Prioritized Deciding Factor(PDF) value with
similarity, dependency

SMLARTY | DEPENDRNCY | . FF
UD | DAG | "y g1 VALIE HIT:EP
1 1.2 |0 (20000 0. 00000
1 1-3 | 0.07143 0.08333 0.01420
1 14 | 005051 (50000 0.01818
1 1.5 |0 (. 16667 0. 00000
1 23 [0 (50000 0. 00000
1 24 | 018182 1 00000 003636
1 23 [0 1.00000 0.00000
1 34 | 0.00000 (.33333 000000
1 3-5 | 006867 (133333 0.01333
1 45 | 0.00000 (. 25000 0. 00000

Step6. Prioritization of test cases

The test cases are prioritized based on the Prioritized Deciding
Factor(PDF) value. If the Prioritized Deciding Factor(PDF)
value is >= 0 then the test cases are considered for the
prioritization process otherwise it will be removed from the
list. First, we need to merge the Prioritized Deciding
Factor(PDF) value with valid nodes. Then, prioritize the test
cases based on the prioritized deciding factor (PDF) value. In
step 6 include the following process.

Duplicate removal

This process is removing the replication of test cases. For
example the Prioritized Deciding Factor(PDF) value of 1->3
and 1->4 are 0.0077 and 0.1 respectively. Here 1 occurs two
times. Any test cases can occur one time in the list. According
to this process, there are 54 test cases that are selected from the
full list without duplication.

Ranking the test cases based on PDF value

The selected Prioritized Deciding Factor(PDF) value and
corresponding test cases are ordered by ranking based on
Prioritized Deciding Factor(PDF) value from the highest to the
smallest. In this method, the Prioritized Deciding Factor(PDF)
value in not unique, i.e. the same value for more than test cases
will create some confusion during the priority process.

Prioritization of test cases based on PDF value

Here, the test cases are ranked based on Prioritized Deciding
Factor(PDF) value, but in the prioritization. The same values
are avoided up to the next round selection. For these, the
repetition should be avoided.

Integrated Intelligent Research (1IR)

Table 6 represents the prioritized test case based on the
Prioritized Deciding Factor(PDF) value, if Prioritized
Deciding Factor(PDF) is >=0 then the test case is selected for
prioritization, otherwise the test case would be removed from
the list of test cases. A simple method is only applied. Here,
the Prioritized Deciding Factor(PDF) value is ordered in
ascending order. Based on the Prioritized Deciding
Factor(PDF) ascending, the test cases are arranged.

Table 6 The prioritized test cases are shown in the table

PDF PDF
RANKING UID TID VALUE USE CASE TCASE
1 2 17 1001740 User Tnterface Check other objects too (ex -if its
4 car race-
2 14 |75 000175 Multiplayer game login with registerad but
3 6 1 00026 Userlmerface Check in Landscape Portrat
mode
4 2 20 (000286 User Interface Test whether one object overlaps
with anofher
c Test whether one object overlaps
5 2 9 |000308 User Inferface with another
Verifyifloading indicator is
6 2 |10 |000334 User Inferface isplayed wherever required
7 2 12 000471 User Interface Test for enable and dissble
images/icons’buttons etc
- There should not be any dlipping
H] 8§ |8 000534 User Interface (cutted background)
9 2 |13 000572 User Inferface Check for screen fitle
10 14 79 |0.00637 Multiplayer game Check user stafistics graph
< Verify if sound effects are in sync
11 1 3 000715 Check for background with action
i 1 |1 000770 Check for background 23;2“ sound & background
13 2 |15 |000800 User Inferface Check scrolling
14 3 |18 001192 Performance Check the loading ime of 2 game
15 6 45 (001250 Time Out Check for fime out
16 5 41 001318 Score score calculation
17 1 01 001667 Check for background | ON/OFF sound & background

musicand sound effects |omsic

Step7. Directed Acyclic Graph(DAG) Representation

The Directed Acyclic Graph(DAG) is a graph to represent the
distance between the nodes; the link follow from one node to
another in forward. Here, the backward process is not
necessary in Directed Acyclic Graph(DAG) representation.
Here, the test cases are nodes. We can start the process from
first test case; however, false nodes are not considered in the
list.

Table 7 Use case 1 and Use case 2 valid nodes are shown

Ty Doads DHstances wvalus
1 1-3 0923

1 14 0.9

1 24 0.81818

1 3.5 093333

2 &7 093750

2 6-13 0.8750

2 6-14 092857

2 6-15 0.83333

2 6-17 0. 95154

76

International Journal of Computing Algorithm
Volume: 05 Issue: 02 December 2016 Page No.72-78
ISSN: 2278-2397
Directed Acyclic Graph(DAG) Representation

0.923

Fig 2. Directed Acyclic Graph(DAG)for use case 1
V. RESULT AND DISCUSSION

This section describes t the performance analysis of the
prioritized deciding factor (PDF) approach for the following
metric,The implementation of the prioritized deciding factor

(PDF) is done in the platform of PHP 5.5.12 and
MYSQL5.6.17. The sample screens are
B g iocahowie e - Wandoms Tnisreet Expiorer ==}

TEST CASE PRIORITIZATION USING PDF(PRIORITIZED DECIDING FACTOR) APPROACH

USE CASE DISCRIPTION
Check fiox background music and sound
e

1D TEST CASE DISCRIPTION
1 (ONOFF sound & background music
Gpeck forbackgromd music sadsowd |} ONIOFF sound & backround mmsic

ook backpond w3 (gt coltnd

Verty € sound effects sre in syee with acson

1
1

1

) Check fix background music snd sound. |3
presen

1 Qeckfecbackpomdmuicmdsowd 4 ONIOFF device sound(nstive sound) and check
1 c“m‘k“'h"’""“‘m“‘“"‘ S Check for vibration effect present

efle
2 User Imteface 6 Check in Landscape Portrakt mode
2 Userlotestoc 7 Check for animation, movement of character, praphics, Zoom In'Ow (o gestires) ctc
2 Userlmatace 8§ There shoukd not be amy clipping (curted backgroend)
2 User lmtexface 9 Test whether one object overlaps with another
2 User Intexface 10 Verky f loading indicator is dsplayed wherever required.
2 User lotesfce 11 Character shoukd not move out of the screen/speciied wrea
Done. @ Intermet | Protected Mode On 100%
el = [ix: I T
€l e Sl @] = L]
L e ey =g -]
i~ e - = ‘o x| [-
Ble [R Nm Fpeostes Joon Lele
& g Nocsmostiresl php 5-8 & - Bege~ Sefety = Towh = @
TEST CASE PRIORITIZATION USING PDF(PRIORITIZED DECIDING FACTOR) APPROACH
UID USE CASE COUNT DEPENDENCY VALUE BASED ON USECASE
1 s 020000
2 2 Q0833
3 B 0.50000
i e 016667
s 0 50000
100000
100000
03333
03333
025000
012500
033333
0 06667
109000
2 50000
o 30000
109000]
@ ntwrret | Pratecied Mede O U
T . 1 T 7
P = ixz
® [Jloi= @] = LAl e |
i e aiost ek ph - Wi barm Bl r=n -~ |
&= le ecathont BRI oo
Ui Lo vew s loon bee
J— E y 5
8 it oAbt /et php -8 - Pagev Seey v Taek @
TEST CASE PRIORITIZATION USING PDF(PRIORITIZED DECIDING FACTOR) APPROACH
SIMILARITY
i TEST CASE | TEST CASE 1 VALUE DAG
1t ONOFF sound d backprowd marde Receive e call and check 000000 13
| ONIOFF sound & background mnie | Verify # scumd effccts are in ayne: wilh action 007143 13
| ONOEF soud d backprowd mae | ON/OFF device soundinative soused) and check 005091 14
| DNIOFF sound & backeground musie | Cheel: foe vibeasion effect f presest 0.00000 15
1 Receive the call and check: Veriy i sond effects are in syne with action 000000 23
1 Receive the call and check ON'OFF device soundnative sousd) and check o.1s182 24
1) Recenve the call and check: Check for vibration effect present 0 00000 -5
1 :ﬁ!mdm&x:himm ON'OFF device soundinative sous) and check 0.00000 34
g Vol fsond offects e iname Wik oy o vibestion effect # present 006667 3.5
cnca
| ONOFF device sommdimaie sound) md | oy . o ioeation et f prevent 000000 45
5 Chack for animution, mevemens of character, graphics, Zoom ('O (=l
2 Check in Landscaps Portrar mode geanas) ean 006250 67
2 Chreck in Landscope Porirak mode There shodd mot be any chpping (cutted backpround) 000000 54
2 Cheeck i Lamnlscaps Port st mosde Test whethes one cbject overlaps with ancther 0.00000 (=]
oune @ imam | rovacra Moew 0n s - Hawn -
% - = | i = LERl l 3 - L e 330AM
e [e =l elE s alal

Integrated Intelligent Research (1IR)

€ hip/ flocathost/esk b - Windows Internes Explore:
(<] =5 [4r] o |08 s
Fite

@ g

TEST CASE PRIORITIZATION USING PDF(PRIORITIZED DECIDING FACTOR) APPROACH

UID DAG SIMILARITY VALUE DEPENDENCY VALUE PDF VALUE
2 0.00000 0.20000

1 13 007143
14 009091

1-5 0.00000 020000

1 23 00000 0.20000
2 0.20000

7 0.20000

3 020000
0.20000
020000
0.08333
0.08333
0.08333
0.08333
0.08333
0.08333
0.08333

4 08182
5 0.00000
0.00000
0.06667
1 45 0.0ooon
7 006280
2 0.00000
1 69 000000
2 610 0.00000
I 611 000000
2 612 000000
3T 613 0as00

Uon

@ nbermet | Protected Wode O

A=A E A -

g ocathost, resd. phy - Windows Trterme Explorer
Ce @ M PTe—
e

TCASE
Check other sbjects 100 (ex itz a car race.

login with registered but

Check in Landscape Porwait mode.

Test whether cac objoct overlaps with another

Tess whether cae object overlaps with another

erify f loading mbcator is displayed whercver required
Tess for emakile and disable images/icons buioas e
There shoud ot be sery chpping (cutted backgromad)
Check for screen tile

Check user seatistics graph

Verify if sound effects ane i sync with action
ON/OFF sound & background music
Check scrolleg

Check the loadg e of gune
Check for sme out

2
1
1
1
2 i3
ERT
13 6 a3
5 41 aois
121 oolesT

= . . . —L L]
el oo @l=lmx Bl

Fig.3 Sample screens of proposed work Prioritized Deciding
Factor(PDF)

Fault Detection Using Average percentage of Fault
detection

Average percentage of Fault detection (APFD) is a
standardized metric that is used to find the degree of faults
detected. It depends upon the fault criterion considered.
Average percentage of Fault detection (APFD) is computed to
measure the rate fault detection of coverage based on
prioritization techniques. Average percentage of Fault
detection (APFD) measures the weighted average of the
percentage of faults detected over the life of a test suite.
Average percentage of Fault detection (APFD) values ranges
from 0 to 100, higher number simply faster faults detection
rates [6][10].

Table 8 : shows no of faults and execution time and
Prioritized Deciding Factor(PDF) value of test cases

12 13 4 13 16 17

Fl * ¥ % % ¥

IL] 19 T10

FZ * ¥ * L

F3 * ¥ £ * £ £

Fa * * ¥ *
F5 * * * * ¥ * *
Noof 5 2 4 1 2 3 3 3 2 1
faults
POF

value

0.0077) 002223 0.00713) 0.00716 0.00713 0.00267) 0.002668) 0005336 0.00308) 0.003336

Average percentage of Fault detection (APFD)
:l_'!'f-'1+'!'.=':! +TFmtTfm : L 4)

nm

in

77

International Journal of Computing Algorithm

Volume: 05 Issue: 02 December 2016 Page No.72-78

ISSN: 2278-2397

Generally test cases to be executed in run time, during the

execution there are many faults may occur ,these faults such as

syntax error, technical error ,input error, et., to find that error

and find the execution time of test cases using Average
percentage of Fault detection (APFD) method[11][5][2].

Table 8 represents the faults of each test case and Prioritized
Deciding Factor(PDF) values for the Test cases, consider 10
test cases for fault detection, the following table shows the no
of faults and the time taken for each test cases

Non prioritized test cases are in order among 80 first 10 test
cases only considered

T1,T2,T3,T4,15T6,T7,T8,T9,T10

Average percentage of Fault detection (APFD)
1-5+1+5+2+4+4+4+3+4+3/10*10+1/2*10

0.60

Prioritized test case in the order among 80 test cases, first 10
only considered here

T6,T9,T10 T8,T3,T1,T2,T7,T5,T4

Average percentage of Fault detection (APFD)
5+2+4+1+2+3+3+3+2+1/10*10+1/2*10
1-0.27+0.05

1-0.32

0.68

1-

fault detection rate

m fault detection
rate

co_0000o
W Pmmom®
Mo R 0o~

non
prioritized
test case

prioritized
test case

Fig.4 Graph for fault detection rate

Figure 4 represents the fault detection rate in graph, in x axis-
percentage of fault detection, and in y axis- test case type i.e.
prioritized and non-prioritized. According to the graph,
prioritized test case fault detection rate is higher than non
prioritized test case fault detection rate.

Execution Time of Test Cases
The execution time of test cases are calculated from the
following formula [13]

T.E-T=E.T *NO OF TEST CASES *PERIOD / 8

E.T=3 milli seconds /TC

Number of TC=80

Period of ROI=3 months

=3*80*3/8

=90 ms

=0.09 seconds

Compared with other existing algorithms, this method is better
in time execution of test cases. It takes totally 0.09 seconds
only to execute 80 test cases.

Integrated Intelligent Research (1IR)

Execution time of test cases in
percentage

43% M existing 120 ms

proposed 90 ms

Fig.5.Graph for execution time of test cases

Figure 5 represents the execution time of test cases, Here,
existing test cases takes 120 milli seconds for 80 test cases i.e.
57% and proposed 90 milli second is taken for 80 test cases i.e.
43% only, therefore the execution time of this proposed work
is lesser than the existing work.

VI. CONCLUSION

This paper proposes an algorithm for test case prioritization
using Prioritized Deciding Factor(PDF) method i.e. Prioritized
Deciding Factor. The main aim of the proposed work is
minimize test cases, reduce the testing time and detect faults in
the test cases during execution. Before the calculation of
Prioritized Deciding Factor(PDF), we need to compute
similarity, distance, and dependency values. The dependency
values are computed from use cases. This value is used to
make the prioritization process easy. The PDF value is
calculated from the similarity and dependency values. The
Prioritized Deciding Factor(PDF) based test case prioritization
is better than the existing method. To calculate Fault rate,
Average percentage of Fault detection (APFD) metric is also
applied to detect faults and improve the fault detection rate.
The performance analysis of Average percentage of Fault
detection (APFD) is better than the existing method. The
execution time of test cases is calculated, and those results are
also better than the existing method. In future, this work will
be implementing in all type of applications. The development
of applications are increasing day by day, due to the needs of
users. The Prioritized Deciding Factor(PDF) method will help
to the users to reduce the time of work and faults will be
detected in an easy way.

References

[1] AlameluMangaiyarkarasi V, Dr. Srinath M V and
Dr.Omar A Allhayasat. “A Survey on Agile Software
Testing Mechanism with Directed Ascyclic Graph (DAG)
Based Model in Various Platform,” Australian Journal of
Basic and Applied Sciences, Vol. 8, No. 3, pp. 266-273,

2014,

[2] Thillaikarasi M and Seetharaman K, “Test Case
Prioritization Techniques on Regression Testing,”
International Journal of Innovative Research in
Technology & Science (JIRTS), Volume-2 Issue-
6:Published On November 30,2014

[3] EktaKhandelwal and MadhulikaBhadauria, “Various

Techniques Used for Prioritization of Test Cases,”

78

International Journal of Computing Algorithm
Volume: 05 Issue: 02 December 2016 Page No.72-78
ISSN: 2278-2397
International Journal of Scientific and Research
Publications, Vol.3, No. 6, ISSN 2250-3153,june 2013,
Fang, C., Chen, Z., Wu, K. et al., “Similarity-Based Test
Case Prioritization Using Ordered Sequences of Program
Entities.”. Software Qual J (2014) 22: 335.
d0i:10.1007/s11219-013-9224-0
Pradeepa R and Vimala Devi K. “Effectiveness of Test
Case Prioritization Using AFD Metric:
Survey”,International Conference on Research Trends in
Computer Technologies (ICRTCT - 2013) Proceedings
published in International Journal of Computer
Applications® (IJCA) (0975 — 8887)
[6]Anil Mor, “Evaluate the Effectiveness of Test Suite
Prioritization Techniques Using APFD Metric,” IOSR
Journal of Computer Engineering, Vol. 16, No.4, pp. 47-
5, 2014
SiripongRoongruangsuwan and JirapunDaengdej. “Test
Case Prioritization Techniques,” Journal of Theoretical
and Applied Information technology.,Vol.18,No.2, 2010.

[4]

[5].

(7T

[8] Sahil Gupta, HimanshiRaperia, EshanKapur, Harshpreet
Singh and Aseem Kumar. “A Novel approach for Test
Case Prioritization,” International Journal of Computer
Science, Engineering and Applications, Vol. 2, No. 3,
2012
Vivekananda Reddy D and Rama Mohan Reddy A. “An
Approach for Fault Detection in Software Testing
Through Optimized Test Case Prioritization,”
International Journal of Applied Engineering Research,
Vol. 11, No. 1, pp. 57-63, 2016.
Kavitha R and Sureshkumar N. “Test Case
Prioritization for Regression Testing Based on Severity
of Fault,” (IJCSE) International Journal on Computer
Science and Engineering, Vol. 2, No. 05, pp. 1462-
1466, 2010,.
Praveen RanjanSrivastava. “Test Case Prioritization,”
Journal of Theoretical And Applied Information
Technology,vol. 4 (3), 178-181,2008.
VasileiosHatzivassiloglou, Judith L Klavans, Melissa L.
Holcombe, Regina Barzilay, Min-Yen Kan, and
Kathleen R. McKeown. “SIMFINDER: A Flexible
Clustering Tool for Summarization.” published in in
proceedings of the naacl workshop on automatic
summarization,2001
http://www.testing-whiz.com/blog/how-to-calculate-roi-
for-test
AlameluMangiyarkarasi V, Dr. Srinath M V,An
efficient DAGbM-KSJS algorithms for agile software
testing,international review on computers and software,
ISSN:1828-6003, e-ISSN: 1828-6011.

[0]

[10]

[11]

[12]

[13]

[14]

