
Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 05 Issue: 01 June 2016, Page No. 5- 11

ISSN: 2278-2397

5

BugLoc: Bug Localization in Multi Threaded

Application via Graph Mining Approach

A. Adhiselvam
1
, E. Kirubakaran

2
, R. Sukumar

3

1
Assistant Professor, Department of MCA, S.T.E.T Women’s College, Mannargudi

2
Additional General Manager, STTP (System), Bharat Heavy Electrical Limited, Trichy

3
Professor, Department of CSE, Sethu Institute of Technology, Kariapatti

Email: adhiselvam@yahoo.com, ekiru@bheltry.co.in, rsukumar@sethu.ac.in

Abstract - Detection of software bugs and its occurrences,

repudiation and its root cause is a very difficult process in large

multi threaded applications. It is a must for a software

developer or software organization to identify bugs in their

applications and to remove or overcome them. The application

should be protected from malfunctioning. Many of the

compilers and Integrated Development Environments are

effectively identifying errors and bugs in applications while

running or compiling, but they fail in detecting actual cause for

the bugs in the running applications. The developer has to

reframe or recreate the package with the new one without bugs.

It is time consuming and effort is wasted in Software

Development Life Cycle. There is a possibility to use graph

mining techniques in detecting software bugs. But there are

many problems in using graph mining techniques. Managing

large graph data, processing nodes with links and processing

subgraphs are the problems to be faced in graph mining

approach. This paper presents a novel algorithm named

BugLoc which is capable of detecting bugs from the multi

threaded software application. The BugLoc uses object

template to store graph data which reduces graph management

complexities. It also uses substring analysis method in

detecting frequent subgraphs. The BugLoc then analyses

frequent subgraphs to detect exact location of the software

bugs. The experimental results show that the algorithm is very

efficient, accurate and scalable for large graph dataset.

Keywords - Graph Mining, Pattern Mining, Heuristic

Approach, Frequent Subgraph, Bug Localization

I. INTRODUCTION

Graph mining is widely used mining technique to mine large

records of graph dataset that can be used to analyze Protein-

Protein Interactions (PPI) [4], where the nodes represent the

proteins. In the case of networking it is used to analyze the

relationship about the devices, clients and nodes. Using this we

can analyze the social relationships between the clients on the

network. Our idea is to use graph mining technique [3] to

detect bugs present in the software applications. In this paper,

sample graph dataset is used, which represents thread, sub

thread, total process and positive-negative process values. We

use these data to form graph where the nodes in the graph

represent the thread and its sub nodes represent sub thread,

values in between the nodes mentions the threshold value.

Graph mining is a better method in mining large logical data in

detecting systematic relations than the data mining techniques.

Graph mining is not a simple task to implement, forming a

graph with large dataset and managing it seems to be a

complicated task. Many graph mining algorithms in the past

presents a technique to mine relations about the graph data but

none has attempted to mine the bug analysis and have not

succeeded in detection of software bugs.

In the existing system, graph data is handled using grow and

store method, whereas the graph mining algorithm like Apriori

algorithm follows the heuristic approach [14]-[16]. The graph

data is dynamically adopted while executing the algorithm.

Grow and store method fails for large number of data. The

GRAMI algorithm shows better solution in managing graph

data. It holds the template of the data but not the actual values

of the dataset. It also provides better solution in managing

large data but it fails in analyzing Constraint Satisfaction

Problem (CSP)[13]. However the CSP is not related to our

model of work but its drawback should be related with our

threshold calculation between thread nodes. gSpan algorithm

solves the CSP in many graph dataset and stands as the

standard graph mining algorithm for long time. In this paper,

we adopt some methodologies in gSpan algorithm and develop

the heuristic approach in dataset of thread processes to localize

bugs in software application. In this paper, the following

problems have been addressed to succeed in our approach of

bug localization. They are:

i. The large number of graph dataset should be formed as

graph nodes and properly handled to perform further

processes.

ii. The threshold value should be calculated properly for

every node.

iii. The frequent threshold value should be calculated for

every node in the graph.

iv. The frequent subgraph should be identified and mined

properly.

v. The thread with the bug should be identified with the

frequent threshold calculation and negative threshold

value.

This paper discusses how to solve these problems through

graph mining approach and detect the bugs in multi threaded

application using our proposed algorithm named BugLoc. The

organization of the paper is as follows. Section 2 provides

related work of our research problem. Design of Bug localizer

algorithm is provided in Section 3. Section 4 describes

experiment and results of the algorithm. Final section

contributes conclusion and future work.

II. RELATED WORK

This section discusses related work in many different

directions. In Transactional mining [8], this setting is

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 05 Issue: 01 June 2016, Page No. 5- 11

ISSN: 2278-2397

6

concerned with mining frequent subgraphs on a dataset of

many, usually small graphs. FSQ [2] constructs new candidate

patterns by joining smaller frequent ones. The drawback of this

approach is the costly join-operation and the pruning of false

positives. gSpan[6] proposed a variation of the pattern growth

approach. It uses an extension mechanism, where subgraphs

grow directly from a single subgraph instead of joining two

previous subgraphs. Other methods focused particularly on

subsets of frequent subgraphs. MARGIN returns maximal

subgraphs only, whereas CloseGraph generates subgraphs that

have strictly smaller support than any of their parts. LEAP and

GRAPHSIG, on the other hand, discovered important

subgraphs that are not necessarily frequent. Although GRAMI

[1] focused on the single large graph setting, it may also be

easily specialized to support graph transactions. In single graph

mining, the equally important single graph is stored as unique

pattern with less work. The major difference is definition of an

appropriate anti-monotone support metric. SIGRAM used the

Maximum Independent Set (MIS) metric and proposed an

algorithm that finds frequent connected subgraphs in a single,

labeled, sparse and undirected graph [7],[8]. SIGRAM

followed a grow-and-store approach, that is, it needs to store

intermediate results in order to evaluate frequencies. Overall,

SIGRAM needs to enumerate all isomorphism and relies on the

expensive computation of MIS which is NP complete [11].

Hence the method is very expensive in practice.

Since the number of intermediate embeddings increases

exponentially with the graph size, such approaches do not scale

for large graphs. In contrast, GRAMI does not need to

construct all the isomorphism. Hence, it can be scaled much

larger graphs. More importantly, GRAMI supports frequent

subgraph and pattern mining [28]. Thus, it allows for exact

isomorphism matching and the more general distance-

constrained pattern matching. Additionally, GRAMI supports

constraint-based mining and works on directed, undirected,

single and multi-labeled graphs. In Approximate mining [9],

there is a work on approximate techniques for solving the

frequent subgraph mining problem as well. In GREW, the

authors proposed a heuristic approach that prunes large parts of

the search space, but discovers only a small subset of the

answers. GAPPROX employs an approximate version of the

MIS metric. It mainly relies on enumerating all intermediate

isomorphism but allows approximate matches [5]. SEUS is

another approximate method that constructs a compact

summary of the input graph.

This facilitates pruning many infrequent candidates, however,

it is only useful when the input graph contains few and very

frequent subgraphs [17]-[19],[27]. SUBDUE is a branch-and-

bound technique that mines subgraphs that can be used to

compress the original graph. Khan et al. proposed proximity

patterns, which relax the connectivity constraint of subgraphs

and identify frequent patterns that cannot be found by other

approaches[9]. In contrast to the existing works, AGRAMI, an

approximate version of GRAMI, may miss some frequent

subgraphs, but the returned results do not have false positives.

In Subgraph isomorphism[20]-[22], the frequent subgraph

mining problem relies on the computation of subgraph

isomorphism. This problem is NP-complete and the first

practical algorithm that addressed that problem which follows

a backtracking technique. Since then, several performance

enhancements were proposed, ranging from CSP based

techniques, search order optimization, indexing to

parallelization.

Although the state-of-the-art subgraph isomorphism techniques

lead to significant improvements, they are not as effective in

the frequent subgraph mining problem for two reasons: First,

subgraph isomorphism techniques are effective in finding all

appearances of a subgraph, while for the frequent subgraph

mining task, it is sufficient to find the minimum appearances

that satisfy the support threshold. This difference affects the

way in which graph nodes are traversed, minimizing the

number of node visited during search. Additionally, modern

techniques employed global pruning and indexing techniques.

GRAMI is based on a novel CSP method that overcomes the

previous shortcomings and outperforms state-of-the-art

subgraph isomorphism techniques. There are many works on

pattern matching [22],[23] over graphs as well. R-JOIN

supports reachability queries in a directed graph [10]-[12]. If

two nodes v and v′ are reachable in the query, then their

corresponding mappings u and u′ in the graph must also be

reachable. DISTANCE-JOIN extends the idea to undirected

graphs and accommodates constraints on the distance in the

path. GRAMI presents an extension to support frequent pattern

mining [24]-[26], the extended version adopts the pattern [29].

The conventional approaches have the drawbacks that every

method occurs once within the graph. This leads to small

graphs, which allows for graph-mining-based bug localization

even with large software application. On the other side, much

information about the program execution is lost, e.g.,

frequencies of the execution of methods and information on

different structural patterns within the graph. The entropy

approach omits substructures which are called more than twice

in a row. Thus, it keeps more information than the other one,

with the risk of generating very large graphs. The paper [30],

the author compared two algorithms named gSpan and

CloseGraph. Authors pointed out that these two algorithms

showing a better performing in managing graph data. They also

concluded that there is a possibility of detecting software bugs

by improving those algorithms.

III. BUG LOCALIZER

From studying the above literature we assume that there will be

a better way in detecting the bugs in software threads. For this,

we have to adopt a new technique that should be differentiating

from the previous mining techniques. The only problem that

we face in localizing bugs is the way in which we can localize

the bugs. In existing methodologies call graph uses the

threshold value to analyze the weightage between the two

nodes. The weightage threshold mentions the time difference

between query submission and response time [9].

So, in our bug localization technique we must consider

parameters such as positive process (Pprocess) and negative

process (Nprocess) to detect weightage between two nodes.

We calculate the threshold value by calculating difference

between number of Pprocess and Nprocess occurred in

between two threads. The Pprocess is the total count of

processes executed before the error occurred. The Nprocess is

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 05 Issue: 01 June 2016, Page No. 5- 11

ISSN: 2278-2397

7

the number of errors which causes occurrence of the bug in the

thread. The sample dataset is given in the Figure 1.

Figure 1: Sample graph dataset

The format of dataset is given Table 1. The first parameter

(XXXX) mentions the thread id in the program, which is also

called as the base thread. The second parameter (YYYY)

mentions the sub thread created by the base thread. The third

parameter is Tprocess, which denotes the total number of

processes that has to be executed between the thread and

subthread. The fourth parameter is the Pprocess, which

denotes the number of positive process executed in between

base thread and sub thread. The fifth parameter is the

Nprocess which denotes the negative process occurred due to

the bug.

Table 1: Dataset format

Thread Subthread Tprocess Pprocess Nprocess

XXXX YYYY M N O

Using this sample graph dataset we form a graph and mine it

using frequent subgraph mining technique with our proposed

algorithm BugLoc. BugLoc includes the following five steps.

Each step is presented in the following sub sections.

Step 1: Threshold Calculation

Step 2: Frequency Threshold Calculation

Step 3: Thread Flow Identification

Step 4: Frequent Subgraph Identification

Step 5: Bug Localization

A. Threshold Calculation

Initially, the algorithm reads the input data from the file which

holds the graph dataset. Graph dataset is read and divided into

parameter values. The parameter values are stored as an object

template which is used to reduce the memory usage while

processing the large graph dataset. And then the threshold

value is calculated from the input parameters such as Pprocess

and Nprocess. The threshold value is the difference between

the Pprocess and the Nprocess. The calculated threshold value

is also stored into the object template. The procedure for

threshold calculation is stated as follows. The output of this

procedure is shown in Figure 2.

procedure thresholdCalculation ():

 read dataset

 for data in dataset

 split data

 get thread

 get sub_thread

 get pprocess

 get nprocess

 threshold=difference(pprocess, nprocess)

 end for

 write threshold dataset

end procedure

Figure 2: Result of Threshold Calculation

B. Frequency Threshold Calculation

After calculating the threshold values, frequency threshold

values have to be identified for every thread. To calculate the

frequency threshold value, the repeated threshold value is

identified from the calculated threshold values in the object

template. Now the frequency threshold value is also stored into

the object template. In the similar way frequency threshold

value is calculated for every threshold in the object template.

The procedure to calculate frequency threshold is given below.

The output of this procedure is shown in Figure 3.

Figure 3: Result of Frequency Threshold Calculation

procedure frequencyThresholdCalculation ():

 get all_flows

 for flow in flow

 for nodes in flow

 set threshold threshold (node, node+1)

 end for

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 05 Issue: 01 June 2016, Page No. 5- 11

ISSN: 2278-2397

8

 end for

 for flow in flows

 for node in flow

 for threshold in node

 get repeated threshold

 end for

 end for

 end for

 store frequencyThreshold

end procedure

C. Thread Flow Identification

The next step is to identify the thread flow from the object

template. This step of our algorithm performs thread flow

calculation by ordering the thread and its sub thread until the

last sub thread found from the object template. This is

continued for every base thread. A separate array list is

maintained to hold the set of thread flows. Each thread flow is

represented as a complete string. The procedure for thread flow

identification is given below. The output of thread flow

identification is shown in Figure 4.

procedure threadFlowIdentification():

 read dataset from threshold_file

 for data in dataset

 listofthreaddata[0]

 listofthreaddata[1]

 listofthreaddata[2]

 end for

 sub_thread_presenttrue

 while (sub_thread_present):

 for thread in list

 get sub_thread for thread

 add flowsub_thread

 threadsub_thread

 if !sub_thread_ present

 sub_thread_ presentfalse

 end if

 end for

 end while

 write flow to file

end procedure

Figure 4: Result of Thread Flow Identification

D. Frequent Subgraph Identification

Frequent Subgraph identification is the main process which

adopts the techniques of graph mining related to gSpan

algorithm. Unlike the existing algorithms, our algorithm takes

each thread flow as a complete string, and holds the entire

strings into single object. We do not need to use individual

object for every node. By holding the thread flow as a single

object, it can be easily managed and the frequent subgraph can

be identified by processing thread flows using substring

analysis method. The repeated substring in the thread flow

mentions the frequent subgraph identified from every thread

flow. The procedure for frequent subgraph identification is

given below. The output of this step is shown in Figure 5.

procedure frequentSubgraphIdentification ():

 get all_flows

 for node in flows

 join (nodes)

 store flow

 end for

 for flow1 in flows

 for flow2 in flows

 if flow2 contains flow2

 increment(flow1_count)

 end if

 end for

 end for

 sub_graphflow1

end procedure

E. Bug Localization

The next and final step of the algorithm is to identify bug

threads from the object template. Threshold values, frequency

threshold values and frequent subgraphs are obtained from the

previous steps. The bug thread can be identified by tracing

threads in every frequent subgraph. If a thread in the frequent

subgraph has negative threshold value with positive frequency

threshold value, then it is added to the bug thread list. To filter

out the bug threads exactly, the repeated bug threads have to be

identified from the bug thread list. The algorithm does it by

detecting the repeated bug threads with same threshold value in

the bug thread list. Finally all the detected bug threads are

saved as the separate object template which represents the bug

thread and its threshold value. Bug localization procedure is

given below. The output of bug localization is shown in Figure

6.

Figure 5: Result of Frequent Subgraph identification

procedure bugLocalization():

 get all_flows

 for flow in flows

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 05 Issue: 01 June 2016, Page No. 5- 11

ISSN: 2278-2397

9

 for node in flow

 if node with frequency_ threshold

 end_node_of_flownode

 if node_frequency < frequency_threshold

 bug_nodenode

 end if

 end if

 end for

 end for

 for threshold in thresholds

 for node in flow

 if threshold<0

 if node_frequency=frequency_thread

 bug_node. Add(node)

 end if

 end if

 end for

 end for

end procedure

Figure 6: Result of Bug Localization

IV. EXPERIMENTAL EVALUATION

The proposed BugLoc algorithm is implemented with Java

JDK 1.7 and tested with the sample graph datasets. The

algorithm has been executed under the system with the

configuration of Pentium D processor with 4GB RAM

memory. The sample datasets of various counts 500, 1000,

2000 and 3000 are given as input to our BugLoc algorithm. For

500 count of sample dataset, it identifies 135 threads and 127

thread flows. From this, 12 bug threads are detected with the

threshold value -93 in 15 seconds. When 1000 count of sample

dataset is given as input, 446 threads and 338 thread flows are

identified with 75 bug threads of threshold value

-133 in 27 seconds. For count of 2000 dataset, the algorithm

detects 92 bug threads in 41 seconds with threshold value of -

85 from 865 threads and 533 thread flows. The algorithm is

also tested with 3000 count of dataset.

Table 2 shows the input and output of the algorithm. Figure 7

shows relationship between dataset count and execution time.

Figure 8 shows comparison between Number of threads and

Number of thread flows. Figure 9 shows comparison between

number of thread flows and number of bugs.

Table 2: Summary of input and output of the proposed

algorithm

Dataset

count

No. of

threads

No. of

thread

flows

Threshold

values
Bug

threads

Time in

seconds

500 135 127 -93 12 15

1000 446 338 -133 75 27

2000 865 533 -85 92 41

3000 1057 692 -146 83 74

Figure 7: Relationship between dataset and time consumption

Figure 8: Comparison between number of threads and number

of thread flows

Figure 9: Comparison between number of thread flows and

number of bug Threads

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 05 Issue: 01 June 2016, Page No. 5- 11

ISSN: 2278-2397

10

V. CONCLUSION

The proposed algorithm BugLoc has the tendency to localize

bugs in multithreaded applications. From the experimental

results it is verified that the new approach in detecting bugs in

multithreaded application is working properly. This algorithm

is based on graph mining techniques. With the detection of bug

thread from the frequent subgraphs, we can clearly identify

thread flow which causes the error. So, our proposed algorithm

is used not only to detect bug thread but also used to identify

the bug thread’s route cause. Presently the algorithm computes

the bug threads from given graph dataset. In future, this

algorithm can be implemented in real time applications. The

algorithm could be optimized to adopt grow and store method

to hold thread as the node. This algorithm can also be extended

to implement into a software application to generate the bug

reports and send them automatically to the software

developers.

References

[1] Elseidy, Mohammed, Ehab Abdelhamid, Spiros

Skiadopoulos, and Panos Kalnis. "Grami: Frequent

subgraph and pattern mining in a single large

graph." Proceedings of the VLDB Endowment 7, no. 7

(2014): 517-528.

[2] Huan, Jun, Wei Wang, and Jan Prins. "Efficient mining of

frequent subgraphs in the presence of isomorphism."

In Data Mining, 2003. ICDM 2003. Third IEEE

International Conference on, pp. 549-552. IEEE, 2003.

[3] Schaeffer, Satu Elisa. "Graph clustering." Computer

Science Review 1, no. 1 (2007): 27-64.

[4] Lin, Chuan, Young-rae Cho, Woo-chang Hwang, Pengjun

Pei, and Aidong Zhang. "Clustering methods in protein-

protein interaction network." Knowledge Discovery in

Bioinformatics: techniques, methods and

application (2007): 1-35.

[5] Kim, Jinha, Hyungyu Shin, Wook-Shin Han, Sungpack

Hong, and Hassan Chafi. "Taming subgraph isomorphism

for RDF query processing."Proceedings of the VLDB

Endowment 8, no. 11 (2015): 1238-1249.

[6] Bringmann, Björn, and Siegfried Nijssen. "What is

frequent in a single graph?." In Advances in Knowledge

Discovery and Data Mining, pp. 858-863. Springer Berlin

Heidelberg, 2008.

[7] Lakshmi, K. "Frequent Subgraph Mining Algorithms--A

Survey And Framework For Classification." (2012).

[8] Cleve, Jürgen, Uwe Lämmel, and Stefan Wissuwa. "Data

Mining on Transaction Data." Global Markets in Dynamic

Environments, Lisboa (2005).

[9] Silvestri, Claudio, and Salvatore Orlando. "Approximate

mining of frequent patterns on streams." Intelligent Data

Analysis 11, no. 1 (2007): 49-73.

[10] Cheng, Jiefeng, Jeffrey Xu Yu, and Bolin Ding. "Multi

Reachability Query Processing." (2008).

[11] Woeginger, Gerhard J. "Exact algorithms for NP-hard

problems: A survey." InCombinatorial Optimization—

Eureka, You Shrink!, pp. 185-207. Springer Berlin

Heidelberg, 2003.

[12] Dor, Dorit, and Michael Tarsi. "A simple algorithm to

construct a consistent extension of a partially oriented

graph." Technicial Report R-185, Cognitive Systems

Laboratory, UCLA (1992).

[13] Liu, Zhe. "Algorithms for Constraint Satisfaction

Problems (CSPs)." PhD diss., University of Waterloo,

1998.

[14] Wang, Qingguo, Mian Pan, Yi Shang, and Dmitry Korkin.

"A Fast Heuristic Search Algorithm for Finding the

Longest Common Subsequence of Multiple Strings."

In AAAI. 2010.

[15] Qian, Qi, Rong Jin, Jinfeng Yi, Lijun Zhang, and

Shenghuo Zhu. "Efficient distance metric learning by

adaptive sampling and mini-batch stochastic gradient

descent (SGD)." Machine Learning 99, no. 3 (2015): 353-

372.

[16] Thomas, David B., Wayne Luk, Philip HW Leong, and

John D. Villasenor. "Gaussian random number

generators." ACM Computing Surveys (CSUR) 39, no. 4

(2007): 11.

[17] Fiedler, Mathias, and Christian Borgelt. "Support

Computation for Mining Frequent Subgraphs in a Single

Graph." In MLG. 2007.

[18] Ugander, Johan, Lars Backstrom, and Jon Kleinberg.

"Subgraph frequencies: Mapping the empirical and

extremal geography of large graph collections."

InProceedings of the 22nd international conference on

World Wide Web, pp. 1307-1318. International World

Wide Web Conferences Steering Committee, 2013.

[19] Chekuri, Chandra, and Nitish Korula. "Pruning 2-

connected graphs."Algorithmica 62, no. 1-2 (2012): 436-

463.

[20] Cook, Diane J., and Lawrence B. Holder. "Substructure

discovery using minimum description length and

background knowledge." Journal of Artificial Intelligence

Research (1994): 231-255.

[21] He, Huahai, and Ambuj K. Singh. "Graphs-at-a-time:

query language and access methods for graph databases."

In Proceedings of the 2008 ACM SIGMOD international

conference on Management of data, pp. 405-418. ACM,

2008.

[22] Lee, Jinsoo, Wook-Shin Han, Romans Kasperovics, and

Jeong-Hoon Lee. "An in-depth comparison of subgraph

isomorphism algorithms in graph databases."

In Proceedings of the VLDB Endowment, vol. 6, no. 2, pp.

133-144. VLDB Endowment, 2012.

[23] Cortadella, Jordi, and Gabriel Valiente. "A Relational

View of Subgraph Isomorphism." In RelMiCS, pp. 45-54.

2000.

[24] Robardet, Céline. "Constraint-based pattern mining in

dynamic graphs." InData Mining, 2009. ICDM'09. Ninth

IEEE International Conference on, pp. 950-955. IEEE,

2009.

[25] Yan, Xifeng, Hong Cheng, Jiawei Han, and Philip S. Yu.

"Mining significant graph patterns by leap search."

In Proceedings of the 2008 ACM SIGMOD international

conference on Management of data, pp. 433-444. ACM,

2008.

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 05 Issue: 01 June 2016, Page No. 5- 11

ISSN: 2278-2397

11

[26] Chen, Chen, Xifeng Yan, Feida Zhu, and Jiawei Han.

"gapprox: Mining frequent approximate patterns from a

massive network." In Data Mining, 2007. ICDM 2007.

Seventh IEEE International Conference on, pp. 445-450.

IEEE, 2007.

[27] Lakshmi, K., and T. Meyyappan. "A comparative study of

frequent subgraph mining algorithms." International

Journal of Information Technology Convergence and

Services 2, no. 2 (2012): 23.

[28] Zou, Zhaonian, Jianzhong Li, Hong Gao, and Shuo Zhang.

"Frequent subgraph pattern mining on uncertain graph

data." In Proceedings of the 18th ACM conference on

Information and knowledge management, pp. 583-592.

ACM, 2009.

[29] Adhiselvam, A., E. Kirubakaran, and R. Sukumar. "An

Enhanced Approach for Software Bug Localization using

Map Reduce Technique based Apriori (MRTBA)

Algorithm." Indian Journal of Science and Technology 8,

no. 35, 2015.

[30] Adhiselvam, A., E. Kirubakaran, and R. Sukumar. "A

Study On Frequent Subgraph Mining Algorithm and

Techniques for Software Bug Localization." International

Quarterly Journal in Scientific Transactions in

Environment and Technovation 8, no. 4, 2015.

