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Abstract - Detection of software bugs and its occurrences, 

repudiation and its root cause is a very difficult process in large 

multi threaded applications. It is a must for a software 

developer or software organization to identify bugs in their 

applications and to remove or overcome them. The application 

should be protected from malfunctioning. Many of the 

compilers and Integrated Development Environments are 

effectively identifying errors and bugs in applications while 

running or compiling, but they fail in detecting actual cause for 

the bugs in the running applications. The developer has to 

reframe or recreate the package with the new one without bugs. 

It is time consuming and effort is wasted in Software 

Development Life Cycle. There is a possibility to use graph 

mining techniques in detecting software bugs. But there are 

many problems in using graph mining techniques. Managing 

large graph data, processing nodes with links and processing 

subgraphs are the problems to be faced in graph mining 

approach. This paper presents a novel algorithm named 

BugLoc which is capable of detecting bugs from the multi 

threaded software application. The BugLoc uses object 

template to store graph data which reduces graph management 

complexities. It also uses substring analysis method in 

detecting frequent subgraphs. The BugLoc then analyses 

frequent subgraphs to detect exact location of the software 

bugs. The experimental results show that the algorithm is very 

efficient, accurate and scalable for large graph dataset.  

 

Keywords - Graph Mining, Pattern Mining, Heuristic 

Approach, Frequent Subgraph, Bug Localization 

 

I. INTRODUCTION 

 

Graph mining is widely used mining technique to mine large 

records of graph dataset that can be used to analyze Protein-

Protein Interactions (PPI) [4], where the nodes represent the 

proteins. In the case of networking it is used to analyze the 

relationship about the devices, clients and nodes. Using this we 

can analyze the social relationships between the clients on the 

network. Our idea is to use graph mining technique [3] to 

detect bugs present in the software applications. In this paper, 

sample graph dataset is used, which represents thread, sub 

thread, total process and positive-negative process values. We 

use these data to form graph where the nodes in the graph 

represent the thread and its sub nodes represent sub thread, 

values in between the nodes mentions the threshold value. 

Graph mining is a better method in mining large logical data in 

detecting systematic relations than the data mining techniques.  

Graph mining is not a simple task to implement, forming a 

graph with large dataset and managing it seems to be a 

complicated task. Many graph mining algorithms in the past 

presents a technique to mine relations about the graph data but 

none has attempted to mine the bug analysis and have not 

succeeded in detection of software bugs.  

 

In the existing system, graph data is handled using grow and 

store method, whereas the graph mining algorithm like Apriori 

algorithm follows the heuristic approach [14]-[16]. The graph 

data is dynamically adopted while executing the algorithm. 

Grow and store method fails for large number of data. The 

GRAMI algorithm shows better solution in managing graph 

data. It holds the template of the data but not the actual values 

of the dataset. It also provides better solution in managing 

large data but it fails in analyzing Constraint Satisfaction 

Problem (CSP)[13]. However the CSP is not related to our 

model of work but its drawback should be related with our 

threshold calculation between thread nodes. gSpan algorithm 

solves the CSP in many graph dataset and stands as the 

standard graph mining algorithm for long time. In this paper, 

we adopt some methodologies in gSpan algorithm and develop 

the heuristic approach in dataset of thread processes to localize 

bugs in software application. In this paper, the following 

problems have been addressed to succeed in our approach of 

bug localization. They are: 

i. The large number of graph dataset should be formed as 

graph nodes and properly handled to perform further 

processes. 

ii. The threshold value should be calculated properly for 

every node. 

iii. The frequent threshold value should be calculated for 

every node in the graph. 

iv. The frequent subgraph should be identified and mined 

properly. 

v. The thread with the bug should be identified with the 

frequent threshold calculation and negative threshold 

value. 

This paper discusses how to solve these problems through 

graph mining approach and detect the bugs in multi threaded 

application using our proposed algorithm named BugLoc.  The 

organization of the paper is as follows. Section 2 provides 

related work of our research problem. Design of Bug localizer 

algorithm is provided in Section 3.  Section 4 describes 

experiment and results of the algorithm. Final section 

contributes conclusion and future work. 

 

II. RELATED WORK 

 

This section discusses related work in many different 

directions. In Transactional mining [8], this setting is 
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concerned with mining frequent subgraphs on a dataset of 

many, usually small graphs. FSQ [2] constructs new candidate 

patterns by joining smaller frequent ones. The drawback of this 

approach is the costly join-operation and the pruning of false 

positives. gSpan[6] proposed a variation of the pattern growth 

approach. It uses an extension mechanism, where subgraphs 

grow directly from a single subgraph instead of joining two 

previous subgraphs. Other methods focused particularly on 

subsets of frequent subgraphs. MARGIN returns maximal 

subgraphs only, whereas CloseGraph generates subgraphs that 

have strictly smaller support than any of their parts. LEAP and 

GRAPHSIG, on the other hand, discovered important 

subgraphs that are not necessarily frequent. Although GRAMI 

[1] focused on the single large graph setting, it may also be 

easily specialized to support graph transactions. In single graph 

mining, the equally important single graph is stored as unique 

pattern with less work. The major difference is definition of an 

appropriate anti-monotone support metric. SIGRAM used the 

Maximum Independent Set (MIS) metric and proposed an 

algorithm that finds frequent connected subgraphs in a single, 

labeled, sparse and undirected graph [7],[8]. SIGRAM 

followed a grow-and-store approach, that is, it needs to store 

intermediate results in order to evaluate frequencies. Overall, 

SIGRAM needs to enumerate all isomorphism and relies on the 

expensive computation of MIS which is NP complete [11]. 

Hence the method is very expensive in practice. 

 

Since the number of intermediate embeddings increases 

exponentially with the graph size, such approaches do not scale 

for large graphs. In contrast, GRAMI does not need to 

construct all the isomorphism. Hence, it can be scaled much 

larger graphs. More importantly, GRAMI supports frequent 

subgraph and pattern mining [28]. Thus, it allows for exact 

isomorphism matching and the more general distance-

constrained pattern matching. Additionally, GRAMI supports 

constraint-based mining and works on directed, undirected, 

single and multi-labeled graphs. In Approximate mining [9], 

there is a work on approximate techniques for solving the 

frequent subgraph mining problem as well. In GREW, the 

authors proposed a heuristic approach that prunes large parts of 

the search space, but discovers only a small subset of the 

answers. GAPPROX employs an approximate version of the 

MIS metric. It mainly relies on enumerating all intermediate 

isomorphism but allows approximate matches [5]. SEUS is 

another approximate method that constructs a compact 

summary of the input graph.  

 

This facilitates pruning many infrequent candidates, however, 

it is only useful when the input graph contains few and very 

frequent subgraphs [17]-[19],[27]. SUBDUE is a branch-and-

bound technique that mines subgraphs that can be used to 

compress the original graph.  Khan et al. proposed proximity 

patterns, which relax the connectivity constraint of subgraphs 

and identify frequent patterns that cannot be found by other 

approaches[9]. In contrast to the existing works, AGRAMI, an 

approximate version of GRAMI, may miss some frequent 

subgraphs, but the returned results do not have false positives. 

In Subgraph isomorphism[20]-[22], the frequent subgraph 

mining problem relies on the computation of subgraph 

isomorphism. This problem is NP-complete and the first 

practical algorithm that addressed that problem which follows 

a backtracking technique. Since then, several performance 

enhancements were proposed, ranging from CSP based 

techniques, search order optimization, indexing to 

parallelization. 

 

Although the state-of-the-art subgraph isomorphism techniques 

lead to significant improvements, they are not as effective in 

the frequent subgraph mining problem for two reasons: First, 

subgraph isomorphism techniques are effective in finding all 

appearances of a subgraph, while for the frequent subgraph 

mining task, it is sufficient to find the minimum appearances 

that satisfy the support threshold. This difference affects the 

way in which graph nodes are traversed, minimizing the 

number of node visited during search. Additionally, modern 

techniques employed global pruning and indexing techniques. 

GRAMI is based on a novel CSP method that overcomes the 

previous shortcomings and outperforms state-of-the-art 

subgraph isomorphism techniques.  There are many works on 

pattern matching [22],[23] over graphs as well. R-JOIN 

supports reachability queries in a directed graph [10]-[12]. If 

two nodes v and v′ are reachable in the query, then their 

corresponding mappings u and u′ in the graph must also be 

reachable. DISTANCE-JOIN extends the idea to undirected 

graphs and accommodates constraints on the distance in the 

path. GRAMI presents an extension to support frequent pattern 

mining [24]-[26], the extended version adopts the pattern [29]. 

The conventional approaches have the drawbacks that every 

method occurs once within the graph. This leads to small 

graphs, which allows for graph-mining-based bug localization 

even with large software application. On the other side, much 

information about the program execution is lost, e.g., 

frequencies of the execution of methods and information on 

different structural patterns within the graph. The entropy 

approach omits substructures which are called more than twice 

in a row. Thus, it keeps more information than the other one, 

with the risk of generating very large graphs. The paper [30], 

the author compared two algorithms named gSpan and 

CloseGraph. Authors pointed out that these two algorithms 

showing a better performing in managing graph data. They also 

concluded that there is a possibility of detecting software bugs 

by improving those algorithms. 

 

III. BUG LOCALIZER 

 

From studying the above literature we assume that there will be 

a better way in detecting the bugs in software threads. For this, 

we have to adopt a new technique that should be differentiating 

from the previous mining techniques. The only problem that 

we face in localizing bugs is the way in which we can localize 

the bugs. In existing methodologies call graph uses the 

threshold value to analyze the weightage between the two 

nodes. The weightage threshold mentions the time difference 

between query submission and response time [9].  

 

So, in our bug localization technique we must consider 

parameters such as positive process (Pprocess) and negative 

process (Nprocess) to detect weightage between two nodes. 

We calculate the threshold value by calculating difference 

between number of Pprocess and Nprocess occurred in 

between two threads. The Pprocess is the total count of 

processes executed before the error occurred. The Nprocess is 
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the number of errors which causes occurrence of the bug in the 

thread.  The sample dataset is given in the Figure 1. 

 

 
 

Figure 1: Sample graph dataset 

 

The format of dataset is given Table 1.  The first parameter 

(XXXX) mentions the thread id in the program, which is also 

called as the base thread.  The second parameter (YYYY) 

mentions the sub thread created by the base thread.  The third 

parameter is Tprocess, which denotes the total number of 

processes that has to be executed between the thread and 

subthread.  The fourth parameter is the Pprocess, which 

denotes the number of positive process executed in between 

base thread and sub thread.  The fifth parameter is the 

Nprocess which denotes the negative process occurred due to 

the bug. 

Table 1: Dataset format 

 

Thread Subthread Tprocess Pprocess Nprocess 

XXXX YYYY M N O 

 

Using this sample graph dataset we form a graph and mine it 

using frequent subgraph mining technique with our proposed 

algorithm BugLoc.  BugLoc includes the following five steps. 

Each step is presented in the following sub sections. 

Step 1: Threshold Calculation  

Step 2: Frequency Threshold Calculation 

Step 3: Thread Flow Identification 

Step 4: Frequent Subgraph Identification 

Step 5: Bug Localization 

 

A. Threshold Calculation 

Initially, the algorithm reads the input data from the file which 

holds the graph dataset. Graph dataset is read and divided into 

parameter values. The parameter values are stored as an object 

template which is used to reduce the memory usage while 

processing the large graph dataset. And then the threshold 

value is calculated from the input parameters such as Pprocess 

and Nprocess. The threshold value is the difference between 

the Pprocess and the Nprocess. The calculated threshold value 

is also stored into the object template.  The procedure for 

threshold calculation is stated as follows.  The output of this 

procedure is shown in Figure 2. 

 

procedure thresholdCalculation ( ): 

   read dataset 

  for data in dataset 

     split data 

     get thread 

     get sub_thread 

     get pprocess 

     get nprocess 

     threshold=difference(pprocess, nprocess) 

 end for 

 write threshold dataset 

end procedure 

 

 
 

Figure 2: Result of Threshold Calculation 

 

B. Frequency Threshold Calculation 

After calculating the threshold values, frequency threshold 

values have to be identified for every thread. To calculate the 

frequency threshold value, the repeated threshold value is 

identified from the calculated threshold values in the object 

template. Now the frequency threshold value is also stored into 

the object template. In the similar way frequency threshold 

value is calculated for every threshold in the object template. 

The procedure to calculate frequency threshold is given below. 

The output of this procedure is shown in Figure 3. 

 

 
 

Figure 3: Result of Frequency Threshold Calculation 

 

procedure frequencyThresholdCalculation ( ): 

  get all_flows 

    for flow in flow 

      for nodes in flow 

       set threshold threshold (node, node+1) 

     end for 
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   end for 

   for flow in flows 

    for node in flow 

     for threshold in node 

      get repeated threshold 

    end for 

   end for 

  end for 

 store frequencyThreshold 

end procedure 

 

C. Thread Flow Identification 

The next step is to identify the thread flow from the object 

template. This step of our algorithm performs thread flow 

calculation by ordering the thread and its sub thread until the 

last sub thread found from the object template. This is 

continued for every base thread. A separate array list is 

maintained to hold the set of thread flows. Each thread flow is 

represented as a complete string. The procedure for thread flow 

identification is given below. The output of thread flow 

identification is shown in Figure 4. 

 

procedure threadFlowIdentification( ): 

   read dataset from threshold_file 

      for data in dataset  

         listofthreaddata[0] 

         listofthreaddata[1] 

         listofthreaddata[2] 

      end for 

      sub_thread_presenttrue 

      while (sub_thread_present): 

         for thread in list 

            get sub_thread for thread 

            add flowsub_thread 

            threadsub_thread 

            if !sub_thread_ present 

               sub_thread_ presentfalse 

           end if 

      end for 

   end while 

   write flow to file 

end procedure 

 

 
 

Figure 4: Result of Thread Flow Identification 

 

D. Frequent Subgraph Identification 

Frequent Subgraph identification is the main process which 

adopts the techniques of graph mining related to gSpan 

algorithm. Unlike the existing algorithms, our algorithm takes 

each thread flow as a complete string, and holds the entire 

strings into single object. We do not need to use individual 

object for every node. By holding the thread flow as a single 

object, it can be easily managed and the frequent subgraph can 

be identified by processing thread flows using substring 

analysis method. The repeated substring in the thread flow 

mentions the frequent subgraph identified from every thread 

flow. The procedure for frequent subgraph identification is 

given below. The output of this step is shown in Figure 5. 

 

procedure frequentSubgraphIdentification ( ): 

   get all_flows  

   for node in flows 

      join (nodes) 

      store flow 

   end for 

   for flow1 in flows 

      for flow2 in flows 

         if flow2 contains flow2 

            increment(flow1_count) 

         end if 

      end for 

   end for  

   sub_graphflow1 

end procedure 

 

E. Bug Localization 

The next and final step of the algorithm is to identify bug 

threads from the object template. Threshold values, frequency 

threshold values and frequent subgraphs are obtained from the 

previous steps. The bug thread can be identified by tracing 

threads in every frequent subgraph. If a thread in the frequent 

subgraph has negative threshold value with positive frequency 

threshold value, then it is added to the bug thread list. To filter 

out the bug threads exactly, the repeated bug threads have to be 

identified from the bug thread list. The algorithm does it by 

detecting the repeated bug threads with same threshold value in 

the bug thread list.  Finally all the detected bug threads are 

saved as the separate object template which represents the bug 

thread and its threshold value. Bug localization procedure is 

given below. The output of bug localization is shown in Figure 

6. 

 

 
 

Figure 5: Result of Frequent Subgraph identification 

 

procedure bugLocalization( ): 

   get all_flows 

   for flow in flows 
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      for node in flow 

         if node with frequency_ threshold 

            end_node_of_flownode 

            if node_frequency < frequency_threshold 

               bug_nodenode 

            end if 

         end if 

      end for 

   end for 

   for threshold in thresholds 

      for node in flow 

         if threshold<0 

            if node_frequency=frequency_thread 

               bug_node. Add( node) 

            end if 

         end if 

      end for 

   end for 

end procedure 

 

 
 

Figure 6: Result of Bug Localization 

 

IV. EXPERIMENTAL EVALUATION 

 

The proposed BugLoc algorithm is implemented with Java 

JDK 1.7 and tested with the sample graph datasets. The 

algorithm has been executed under the system with the 

configuration of Pentium D processor with 4GB RAM 

memory.  The sample datasets of various counts 500, 1000, 

2000 and 3000 are given as input to our BugLoc algorithm. For 

500 count of sample dataset, it identifies 135 threads and 127 

thread flows. From this, 12 bug threads are detected with the 

threshold value -93 in 15 seconds. When 1000 count of sample 

dataset is given as input, 446 threads and 338 thread flows are 

identified with 75 bug threads of threshold value  

-133 in 27 seconds.  For count of 2000 dataset, the algorithm 

detects 92 bug threads in 41 seconds with threshold value of -

85 from 865 threads and 533 thread flows. The algorithm is 

also tested with 3000 count of dataset.  

 

Table 2 shows the input and output of the algorithm. Figure 7 

shows relationship between dataset count and execution time. 

Figure 8 shows comparison between Number of threads and 

Number of thread flows. Figure 9 shows comparison between 

number of thread flows and number of bugs. 

 

 

Table 2: Summary of input and output of the proposed 

algorithm 

 

Dataset 

count 

No. of 

threads 

No. of 

thread 

flows 

Threshold 

values 
Bug 

threads 

Time in 

seconds 

500 135 127 -93 12 15 

1000 446 338 -133 75 27 

2000 865 533 -85 92 41 

3000 1057 692 -146 83 74 

 

 
 

Figure 7: Relationship between dataset and time consumption 

 

 

 
Figure 8: Comparison between number of threads and number 

of thread flows 

 
Figure 9: Comparison between number of thread flows and 

number of bug Threads 
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V. CONCLUSION 

 

The proposed algorithm BugLoc has the tendency to localize  

bugs in multithreaded applications. From the experimental 

results it is verified that the new approach in detecting bugs in 

multithreaded application is working properly. This algorithm 

is based on graph mining techniques. With the detection of bug 

thread from the frequent subgraphs, we can clearly identify 

thread flow which causes the error. So, our proposed algorithm 

is used not only to detect bug thread but also used to identify 

the bug thread’s route cause. Presently the algorithm computes 

the bug threads from given graph dataset. In future, this 

algorithm can be implemented in real time applications. The 

algorithm could be optimized to adopt grow and store method 

to hold thread as the node. This algorithm can also be extended 

to implement into a software application to generate the bug 

reports and send them automatically to the software 

developers. 

 

References 

[1] Elseidy, Mohammed, Ehab Abdelhamid, Spiros 

Skiadopoulos, and Panos Kalnis. "Grami: Frequent 

subgraph and pattern mining in a single large 

graph." Proceedings of the VLDB Endowment 7, no. 7 

(2014): 517-528. 

[2] Huan, Jun, Wei Wang, and Jan Prins. "Efficient mining of 

frequent subgraphs in the presence of isomorphism." 

In Data Mining, 2003. ICDM 2003. Third IEEE 

International Conference on, pp. 549-552. IEEE, 2003.  

[3] Schaeffer, Satu Elisa. "Graph clustering." Computer 

Science Review 1, no. 1 (2007): 27-64. 

[4] Lin, Chuan, Young-rae Cho, Woo-chang Hwang, Pengjun 

Pei, and Aidong Zhang. "Clustering methods in protein-

protein interaction network." Knowledge Discovery in 

Bioinformatics: techniques, methods and 

application (2007): 1-35. 

[5] Kim, Jinha, Hyungyu Shin, Wook-Shin Han, Sungpack 

Hong, and Hassan Chafi. "Taming subgraph isomorphism 

for RDF query processing."Proceedings of the VLDB 

Endowment 8, no. 11 (2015): 1238-1249. 

[6] Bringmann, Björn, and Siegfried Nijssen. "What is 

frequent in a single graph?." In Advances in Knowledge 

Discovery and Data Mining, pp. 858-863. Springer Berlin 

Heidelberg, 2008.  

[7] Lakshmi, K. "Frequent Subgraph Mining Algorithms--A 

Survey And Framework For Classification." (2012).  

[8] Cleve, Jürgen, Uwe Lämmel, and Stefan Wissuwa. "Data 

Mining on Transaction Data." Global Markets in Dynamic 

Environments, Lisboa (2005). 

[9] Silvestri, Claudio, and Salvatore Orlando. "Approximate 

mining of frequent patterns on streams." Intelligent Data 

Analysis 11, no. 1 (2007): 49-73. 

[10] Cheng, Jiefeng, Jeffrey Xu Yu, and Bolin Ding. "Multi 

Reachability Query Processing." (2008). 

[11] Woeginger, Gerhard J. "Exact algorithms for NP-hard 

problems: A survey." InCombinatorial Optimization—

Eureka, You Shrink!, pp. 185-207. Springer Berlin 

Heidelberg, 2003. 

[12] Dor, Dorit, and Michael Tarsi. "A simple algorithm to 

construct a consistent extension of a partially oriented 

graph." Technicial Report R-185, Cognitive Systems 

Laboratory, UCLA (1992). 

[13] Liu, Zhe. "Algorithms for Constraint Satisfaction 

Problems (CSPs)." PhD diss., University of Waterloo, 

1998. 

[14] Wang, Qingguo, Mian Pan, Yi Shang, and Dmitry Korkin. 

"A Fast Heuristic Search Algorithm for Finding the 

Longest Common Subsequence of Multiple Strings." 

In AAAI. 2010. 

[15] Qian, Qi, Rong Jin, Jinfeng Yi, Lijun Zhang, and 

Shenghuo Zhu. "Efficient distance metric learning by 

adaptive sampling and mini-batch stochastic gradient 

descent (SGD)." Machine Learning 99, no. 3 (2015): 353-

372. 

[16] Thomas, David B., Wayne Luk, Philip HW Leong, and 

John D. Villasenor. "Gaussian random number 

generators." ACM Computing Surveys (CSUR) 39, no. 4 

(2007): 11.  

[17] Fiedler, Mathias, and Christian Borgelt. "Support 

Computation for Mining Frequent Subgraphs in a Single 

Graph." In MLG. 2007. 

[18] Ugander, Johan, Lars Backstrom, and Jon Kleinberg. 

"Subgraph frequencies: Mapping the empirical and 

extremal geography of large graph collections." 

InProceedings of the 22nd international conference on 

World Wide Web, pp. 1307-1318. International World 

Wide Web Conferences Steering Committee, 2013. 

[19] Chekuri, Chandra, and Nitish Korula. "Pruning 2-

connected graphs."Algorithmica 62, no. 1-2 (2012): 436-

463. 

[20] Cook, Diane J., and Lawrence B. Holder. "Substructure 

discovery using minimum description length and 

background knowledge." Journal of Artificial Intelligence 

Research (1994): 231-255. 

[21] He, Huahai, and Ambuj K. Singh. "Graphs-at-a-time: 

query language and access methods for graph databases." 

In Proceedings of the 2008 ACM SIGMOD international 

conference on Management of data, pp. 405-418. ACM, 

2008. 

[22] Lee, Jinsoo, Wook-Shin Han, Romans Kasperovics, and 

Jeong-Hoon Lee. "An in-depth comparison of subgraph 

isomorphism algorithms in graph databases." 

In Proceedings of the VLDB Endowment, vol. 6, no. 2, pp. 

133-144. VLDB Endowment, 2012. 

[23] Cortadella, Jordi, and Gabriel Valiente. "A Relational 

View of Subgraph Isomorphism." In RelMiCS, pp. 45-54. 

2000.  

[24] Robardet, Céline. "Constraint-based pattern mining in 

dynamic graphs." InData Mining, 2009. ICDM'09. Ninth 

IEEE International Conference on, pp. 950-955. IEEE, 

2009.  

[25] Yan, Xifeng, Hong Cheng, Jiawei Han, and Philip S. Yu. 

"Mining significant graph patterns by leap search." 

In Proceedings of the 2008 ACM SIGMOD international 

conference on Management of data, pp. 433-444. ACM, 

2008. 



Integrated Intelligent Research (IIR)                                                                            International Journal of Computing Algorithm 

Volume: 05 Issue: 01 June 2016, Page No. 5- 11 

ISSN: 2278-2397 

 

11 

[26] Chen, Chen, Xifeng Yan, Feida Zhu, and Jiawei Han. 

"gapprox: Mining frequent approximate patterns from a 

massive network." In Data Mining, 2007. ICDM 2007. 

Seventh IEEE International Conference on, pp. 445-450. 

IEEE, 2007.  

[27] Lakshmi, K., and T. Meyyappan. "A comparative study of 

frequent subgraph mining algorithms." International 

Journal of Information Technology Convergence and 

Services 2, no. 2 (2012): 23. 

[28] Zou, Zhaonian, Jianzhong Li, Hong Gao, and Shuo Zhang. 

"Frequent subgraph pattern mining on uncertain graph 

data." In Proceedings of the 18th ACM conference on 

Information and knowledge management, pp. 583-592. 

ACM, 2009. 

[29] Adhiselvam, A., E. Kirubakaran, and R. Sukumar. "An 

Enhanced Approach for Software Bug Localization using 

Map Reduce Technique based Apriori (MRTBA) 

Algorithm." Indian Journal of Science and Technology 8, 

no. 35, 2015. 

[30] Adhiselvam, A., E. Kirubakaran, and R. Sukumar. "A 

Study On Frequent Subgraph Mining Algorithm and 

Techniques for Software Bug Localization." International 

Quarterly Journal in Scientific Transactions in 

Environment and Technovation 8, no. 4, 2015. 


