
Integrated Intelligent Research (IIR) International Journal of Web Technology

Volume: 05 Issue: 01, June 2016, Pages: 75-80

 ISSN: 2278-2389

75

Comparison of Component Based Testing and

Model based Functional Testing through

Graphical User Interface

K.Jaganeshwari
1
, S.Djodilatchoumy

2

1
Research Scholar, SCSVMV University, Kanchipuram

2
Head of the Department of Computer Science, Pachaiyappa’s College, Chennai

Abstract - The birth of GUI is a milestone in the development

of software. It is very popular and welcomed by the consumers

because of its friendly user interface and easy straightforward

operations. Graphical User Interface (GUI) design is currently

shifting from designing GUIs composed of standard widgets to

designing GUIs relying on more natural interactions and adhoc

widgets. This shift is meant to support the advent of GUIs

providing users with more adapted and natural interaction and

the support of new input devices such as multi-touch screens.

Standards widgets (eg. buttons) are more and more replaced by

adhoc ones (eg. the drawing area of graphical editors) and

interaction are shifting from mono-event (eg. button pressures)

to multi event interactions (eg. Multi-touch and gesture-based

interactions).Model based testing is a technique to design

abstract tests from models that partially describe the system’s

behavior. As a consequence, the current GUI model based

testing approaches, which target event based systems, show

their limits when applied to test such new advanced GUIs.

Functional testing is also referred to as black box testing in

which contents of the black box are not known. Functionality

of the black box is understood on the basis of the inputs and

outputs in software. Component based software development is

used for making a new software product rapidly by using fewer

resources. Different components are collected and integrated

together to form new product therefore the quality of new

software product depends upon these components. To ensure

quality of overall product testing of each component is

essential. But problems arise during testing when tester has

limited access to the components. The use of a model to

describe the behavior of a system is a proven and major

advantage to test development teams. Models can be utilized in

many ways throughout the product life-cycle, including

improved quality of specifications, code generation, reliability

analysis, and test generation. This paper discusses the

comparison of component based testing and Model based

testing through GUI of such software products. Some

important strategies are also discussed in this paper and

considering different testing issues and a new component and

model based testing strategy is proposed. A case study of

component and model based system is also used to validate the

effectiveness of this strategy. Also it will focus on the testing

benefits from Model based testing methods and component

based testing to share our experiences from a long term

industrial evaluation on automatically extracting models of

GUI applications and utilizing the extracted models to

automate and support GUI testing.

Keywords - Graphical User Interface, Component based

Testing, Model based Testing, Functional testing, Industrial

test environment

I. INTRODUCTION

The constant increase of system interactivity requires software

testing to closely consider the testing of Graphical User

Interface (GUI). The standard GUI model based testing process

is depicted in Figure 2.the first step consists of obtaining

models describing the structure and behavior of a GUI of the

system under test using a User Interface description

Language(UIDL). These models can be automatically extracted

by reverse engineering from the SUT binaries. Such a model of

existing GUIs is effective for detecting crashes and

regressions. In this case, GUI models are designed manually

from the requirements and the testing process targets

mismatches between a system and its specifications. Once a

model of the GUI is available, a test model is produced, to

drive test generation. In GUI testing, test models are mainly

event flow graphs (EFG).EFGs contain all the possible

sequences of user interactions that can be performed within a

GUI. Test scripts are automatically generated by traversing the

EFG according to a specific test adequacy criterion. Test

scripts are executed on the SUT manually or automatically.

Finally GUI oracles yield test verdicts by comparing effective

results of test scripts with the expected outputs. Component

based software engineering is used to develop new

software application by reusing already build components,

such as third party components and in-house built

components. The reusable components are integrated to

develop a new software product. So the integration process of

the components is very important in component based

development and the quality of new developed application

depends upon the quality of the components that are used in it.

Component based development technique is used to minimize

the complexity in software development. It reduces the

delivery time of the product and increases the software

productivity. It also improves the quality and reduces the

maintenance cost of the product [1].

II. COMPONENT BASED SOFTWARE TESTING

A. Component Testability

Software component testing refers to testing activity that

examines component along with its design, generates

component tests, identifies component faults and evaluates

component reliability. So component testing plays very

important role for the development of a quality component

based software product [4].

B. Significance of Component Based Software Testing

If bugs are not found in software system by the

Integrated Intelligent Research (IIR) International Journal of Web Technology

Volume: 05 Issue: 01, June 2016, Pages: 75-80

 ISSN: 2278-2389

76

development company then the customer will find them. At

this stage it would cause more problems in the system. If these

bugs are found during testing phase by the development team

then it is possible to deliver quality software product to the

customer. Therefore to develop nearly a bug free software

product testing is one of the key phases in software

development life cycle. Without testing it is impossible to

deliver such quality product which is fulfilling customer

requirements. Therefore to improve company’s credibility in

the market it is very important to deliver bug free product.

Therefore testing is very critical part for the development of

quality product. This testing focuses on the prevention of the

product from the bugs and also reduces the risks which

cause the system from working efficiently [5]. Cost of fixing

any bug in the software system is more if it is found in the

later stages. Due to this reason it become more difficult to

solve the problem and cost of fixing that bug in the product

grows immensely. Therefore testing process supports the

software development cycle a lot to reduce the

development cost from the early stage and bugs can be

removed with fewer loads on the software product.

The main purpose of software testing is to identify the

hidden errors in the product. After finding and removing these

bugs guarantee to develop a quality product. So testing

provides confirmation whether the software product will

actually work according to the specification and will be

functioning with very less bugs. In Component based

software development, testing of each component and

overall final product is very important. Since final product is

made of different software components therefore the quality

of overall product depends upon each component that is

used. The purpose of testing each component proves

the quality of the component and the overall performance

of the system. If any component used in the software product

fails to perform its tasks then it can lead to the overall

software product failure [6].

Figure 1: Component Testing

Component testing may be done in isolation from rest of the

system depending on the development life cycle model chosen

for that particular application. In such case the missing

software is replaced by Stubs and Drivers and simulates the

interface between the software components in a simple

manner. Let’s take an example to understand it in a better

way. Suppose there is an application consisting of three

modules say, module A, module B and module C. The

developer has developed the module B and now wanted to test

it. But in order to test the module B completely few of its

functionalities are dependent on module A and few on module

C. But the module A and module C has not been developed

yet. In that case to test the module B completely we can

replace the module A and module C by stub and drivers as

required. A stub is called from the software component to be

tested. As shown in the diagram below ‘Stub’ is called by

‘component A’. A driver calls the component to be tested. As

shown in the diagram below ‘component B’ is called by the

‘Driver’

C. Component testability

Component testability is an important quality meter that is very

helpful during testing phase to support quality and reliability

of component.

Characteristics that ensure good component testability [15]:

1) Component Traceability: It refers how to track the

component behavior and attributes. It facilitates the

monitoring of component behavior in software.

2) Component Observability: This shows how component

facilitates the observation of its functions and operational

behaviors.

3) Component Controllability: This shows component

facilitates the control of its executions during validation.

4) Component Understandability: It refers to the

information about component that represents how well

component is presented to facilitate component understanding.

5) Component Test Support Capability: It is validated

only during component test process and focuses during

component validation.

In component based software engineering (CBSE) the

primary goal is to develop reusable software components.

Then third party engineers use these components according to

the requirements given by their customers to build the new

product. So at this level testing of all integrated components is

necessary as for the final product. So the component testability

supports enough for the component reliability.

D. Component Test Challenges

There are some difficulties and challenges in testing

components and some of these facts may cause problem in the

component based system testing [1].

1) Absence of information exchange between the

consumer and the producers of the components in the case of

third party component may cause difficulties to test the

components used for new product.

2) The unavailability of the source code for the consumer of

the components causes limitations for testing the

components.

3) Although there are some tools that give some support to

component testing but they are not integrated with

development environment that cause limitations testing

components with the help of testing tools.

4) There are some limitations to create test suites that

contain generic test cases because component with the similar

behavior may have different usage.

5) Users and developer are not provided with the

component change information and unit testing suites.

GUIs are composed of graphical objects called widgets, such

as buttons. Users interact with these widgets (eg. press a

button) to produce an action that modifies the state of the

Integrated Intelligent Research (IIR) International Journal of Web Technology

Volume: 05 Issue: 01, June 2016, Pages: 75-80

 ISSN: 2278-2389

77

system, the GUI or the data model. For instance, pressing the

button delete of a drawing editor produces an action that

deletes the selected shapes from the current drawing. Most of

these standard widgets provide users with an interaction

composed of a single input event (eg. pressing a button).

Indeed, GUI model based testing approaches relying on

standard widgets show their limits for testing such new kinds

of advanced GUIs. If they demonstrated their efficiency to find

crashes and regressions in standard GUIs, testing advanced

GUIs requires the ability to test adhoc widgets and their

complex interactions that existing approaches cannot test.

Figure.2: Standard GUI model based testing process

A primary goal of software testing is to find faults by running

tests. Whether tests can find faults depends by running tests.

Whether tests can find faults depends on two key factors: test

inputs and test oracles. In our context, test inputs consist of

method calls to a system under test (SUT) and necessary test

values. A test oracle determines whether a test passes.In model

based testing (MBT), a model partially specifies the behavior

of a system. Abstract tests are generated to cover test

requirements imposed by a coverage criterion.

III. CURRENT LIMITATIONS IN TESTING

ADVANCED GUIS

Using Latex draw as an illustrative example, we explain in this

section the limitations of the current approaches for testing

advanced GUIs and thus for detecting errors. Studying errors

found by current GUI testing frameworks GUITAR is one of

the most widespread academic GUI testing frameworks that

demonstrated its ability to find errors in standard GUIs . It

follows the standard GUI testing process depicted by Figure 2

and can be thus studied to highlight and explain the limitations

of the current GUI testing approaches for testing advanced

GUIs. GUITAR developers provide information on 95 major

errors detected by this tool during the last years in open-source

interactive systems. An analysis of these errors shows that: 1)

all of them has been provoked by the use of standard widgets

with mono-event interactions, mainly buttons and text fields; 2)

all of them are crashes. While several of the tested interactive

systems provide advanced interactive features, all the reported

errors are related to standard widgets. For instance, ArgoUML

is a modeling tool having a drawing area for sketching

diagrams similarly to Latexdraw. None of the errors found by

GUITAR on ArgoUML has been detected by interacting with

this drawing area.We applied GUITAR on Latexdraw to

evaluate how it manages the mix of both standard widgets and

ad hoc ones, i.e. the drawing area and its content. If standard

widgets were successfully tested, no test script interacted with

the drawing area. In the next section, we identify the reasons of

this limit and explain what is mandatory for resolving it.

IV. LIMITS OF THE CURRENT GUI TESTING

FRAMEWORKS

The main differences between standard widgets and ad hoc

ones are: one can interact with standard widgets using a single

mono-event interaction while ad hoc ones provide multiple and

multi-event interactions; ad hoc widgets can contain other

widgets and data representations (e.g. shapes or the handlers to

scale shapes in the drawing area). Moreover, as previously

explained, four elements are involved in the typical GUI

testing process: the GUI oracle; the test model; the language

used to build GUI models; the model creation process. In this

section we explain how current GUI and test models hinder the

ability to test advanced GUIs. Current GUI models are not

expressive enough. Languages used to build GUI models,

called UIDLs, are a corner-stone in the testing process. Their

expressiveness has a direct impact on the concepts that can

compose a GUI test model (e.g. an EFG). That has, therefore,

an impact on the ability of generated GUI test cases to detect

various GUI errors. For instance, GUITAR uses its own UIDL

that captures GUI structures (the widgets that compose a GUI

and their layout).However, in the current trend of developing

highly interactive GUIs that use ad hoc widgets, current UIDLs

used to test GUIs are no longer expressive enough. First,

UIDLs currently used for GUIs testing describe the widgets but

not how to interact with them.

The reason behind this choice is that current GUI testing

frameworks test standard widgets, which behavior is the same

in many GUI platforms. For instance, buttons work by pressing

on it using a pointing device on all GUI platforms. This choice

is no more adapted for advanced GUIs that rely more and more

on ad hoc widgets and interactions. Indeed, the behavior of

these tests has been developed specially for a GUI and is thus

not standard. As depicted in Figure 2, GUITAR embeds the

definition of how to interact with widgets directly in the Java

code of the framework. Test scripts notify the framework of

the widgets to use on the SUT. The framework uses its widgets

definitions to interact with them.

Figure 3: Representation of how interactions are currently

managed and the current limit

So, supporting a new widget implies extending the framework.

Even in this case, if users can interact with a widget using

different interactions the framework randomly selects one of

the possible interactions. Thus, the choice of the interaction to

use must be clearly specified in GUI models. That will permit

to generate a test model (e.g. an EFG) that can explore all the

possible interactions instead of a single one. UIDLs must be

Integrated Intelligent Research (IIR) International Journal of Web Technology

Volume: 05 Issue: 01, June 2016, Pages: 75-80

 ISSN: 2278-2389

78

expressive enough for expressing such interactions in GUI

models.

V. MODEL BASED TESTING

A generic process of model-based testing then proceeds as

follows (Fig. 4).

Step 1: A model of the SUT is built on the grounds of

requirements or existing specification documents. This

model encodes the intended behavior, and it can reside

at various levels of abstraction. The most abstract variant

maps each possible input to the output “no exception” or “no

crash”. It can also be abstract in that it neglects certain

functionality, or disregards certain quality-of-

service attributes such as timing or security.

Figure 4: Model based testing

Step 2: Test selection criteria are defined. In general, it

is difficult to define a “good test case” a-priori. Arguably, a

good test case is one that is likely to detect severe and

likely failures at an acceptable cost, and that is helpful

the identifying the underlying fault. Unfortunately, this

definition is not constructive. Test selection criteria

try to approximate this notion by choosing a subset of

behaviors of the model. A test selection criterion

possibly informally describes a test suite. In general, test

selection criteria can relate to a given functionality of

the system (requirements based test selection criteria), to

the structure of the model (state coverage, transition

coverage, def-use coverage), to stochastic

characterizations such as pure randomness or user profiles,

and they can also relate to a well-defined set of faults.

Step 3: Test selection criteria are then transformed into test

case specifications. Test case specifications formalize the

notion of test selection criteria and render them operational:

given a model and a test case specification, some

automatic test case generator must be capable of

deriving a test suite (see step 4). For instance, “state

coverage” would translate into statements of the form “reach

_” for all states _ of the (finite) state space, plus possibly

further constraints on the length and number of the test cases.

Each of these statements is one test case specification.

The difference between a test case specification and a test

suite is that the former is intensional (“fruit”) while

the latter is extensional (“apples, oranges,”) all tests

are explicitly enumerated.

Step 4: Once the model and the test case

specification are defined, a test suite is generated. The

set of test cases that satisfy a test case specification can

be empty. Usually, however, there are many test cases

that satisfy it. Test case generators then tend to pick some at

random.

Step 5: Once the test suite has been generated, the test cases

are run (sometimes, in particular inthe context of non-

deterministic systems, generating and running tests are

dove-tailed).

Running a test case includes two stages.

Step 5-1

Recall that model and SUT reside at different levels

of abstraction, and that these different levels must be

bridged [2]. Executing a test case then denotes the

activity of applying the concretized input part of a test case

to the SUT and recording the SUT’s output. Concretization

of the input part of a test case is performed by a component

called the adaptor. The adaptor also takes care of

abstracting the output (see Fig 3).

Step 5-2

A verdict is the result of the comparison of the output of the

SUT with the expected output as provided by the test case.

To this end, the output of the SUT must have been abstracted.

Consider the example of testing a chip card that can

compute digital signatures [7]. The verdict can take the

outcomes pass, fail, and inconclusive. A test passes if

expected and actual output conforms. It fails if they do

not, and it is inconclusive when this decision cannot be

made.

VI. IMPORTANCE OF MBT

The first obstacle to overcome in developing tests is to

determine the test target. While this may sound trivial, it is

often the first place things go wrong. A description of the

product or application to be tested is essential. The form the

description can come in may vary from a set of call flow

graphs for a voice mail system, to the user guide for a billing

system’s GUI. A defined set of features and / or behaviors of a

product is needed in order to define the scope of the work (both

development and test). The traditional means of specifying the

correct system behavior is with English prose in the form of a

Requirement Specification or Functional Specification

[1]. The specification, when in prose, is often incomplete -

only the typical or ideal use of the feature(s) is defined, not all

of the possible actions or use scenarios. This incomplete

description forces the test engineer to wait until the system is

delivered so that the entire context of the feature is known.

When the complete context is understood, tests can be

developed that will verify all of the possible remaining

scenarios. Another problem with textual descriptions is that

they are ambiguous, (for example “if an invalid digit is entered,

it shall be handled appropriately.”) The ‘appropriate’ action is

never defined; rather, it is left to the reader’s interpretation.

Integrated Intelligent Research (IIR) International Journal of Web Technology

Volume: 05 Issue: 01, June 2016, Pages: 75-80

 ISSN: 2278-2389

79

VII. MODELING BEHAVIOR TO GENERATE

FUNCTIONAL TESTS AND OMPONENT TEST

THROUGH THE USER INTERFACE

The Functional Requirements Specification and process flow

documents define the behavior of the Application under Test

(AUT). The AUT in this case is a forms-based system that

builds a record and submits a transaction. The documents

contain functional descriptions of the application as well as

detailed data descriptions. The specifications are used at the

highest level to determine valid use scenarios for processing

the forms. At the lowest level they determine valid inputs and

expected outputs for each field in a given transaction as well as

error message descriptions. The purpose of testing each

component proves the quality of the component and the overall

performance of the system. If any component used in the

software product fails to perform its tasks then it can lead to

the overall software product failure [6].The model based

approach captures this detail as well has the behavior

represented by the specifications. The model is processed in

order to produce the executable test files required by the Test

Environment. The work order application is very

straightforward to test. A simple scripting language is used to

traverse from field to field and form to form. Elements of the

scripting language are embedded on each transition in the

model in such a way that when the model is processed, the

model defines a test of the behavior of the application. For

each valid flow (or path) derived from the model, a new test is

created. These paths include the operational scenarios specified

in the requirements specification as well as other valuable test

scenarios.

VIII. VIII. INDUSTRY IMPORTANCE

Modeling is a very economical means of capturing

knowledge about a system and then reusing this knowledge

as the system grows. For a testing team, this information is

gold; what percentage of a test engineer's task is spent

trying to understand what the System Under Test (SUT)

should be doing? (Not just is doing.) Once this

information is understood, how is it preserved for the next

engineer, the next release, or change order? If you are lucky

it is in the test plan, but more typically buried in a test script

or just lost, waiting to be rediscovered. By

constructing a model of a system that defines the

systems desired behavior for specified inputs to it, a team

now has a mechanism for a structured analysis of the

system. Scenarios are described as a sequence of

actions to the system, with the correct responses of the

system also being specified. Test coverage is understood and

test plans are developed in the context of the SUT, the

resources available and the coverage that can be delivered.

The largest benefit is in reuse; all of this work is not lost.

The next test cycle can start where this one left off. If

the product has new features, they can be incrementally

added to the model; if the quality must be improved,

the model can be improved and the tests expanded; if there

are new people on the team, they can quickly come up to

speed by reviewing the model.

The increased complexity of systems as well as short

product release schedules makes the task of testing

challenging. One of the key problems is that testing typically

comes late in the project release cycle, and traditional testing

is performed manually. When bugs are detected, the cost of

rework and additional regression testing is costly and

further impacts the product release. The increased

complexity of today’s software-intensive systems

means that there are a potentially indefinite number of

combinations of inputs and events that result in distinct

system outputs and many of these combinations are

often not covered by manual testing. We work with

companies that have high process maturity levels, and

excellent measurement data that shows that testing is more

50-75% of the total cost of a product release, yet these

mature processes are not addressing this costly issue.

Testtools may not replace human intelligence in testing, but

without them testing complex systems at a reasonable

cost will never be possible. There are commercial

products to support automated testing, most based on

capture/playback mechanisms, and organizations that have

tried these tools quickly realize that these approaches are

still manually intensive and difficult to maintain. Even small

changes to the application functionality or GUI can render a

captured test session useless. But more importantly, these

tools don't help test organizations figure out what tests to

write, nor do they give any information about test

coverage of the functionality.

IX. CONCLUSION

The efforts spent on testing are enormous due to the

continuing quest for better software quality, and the ever

growing complexity of software systems. The situation is

aggravated by the fact that the complexity of testing tends to

grow faster than the complexity of the systems being tested,

in the worst case even exponentially. Whereas development

and construction methods for software allow the building of

ever larger and more complex systems, there is a real danger

that testing methods cannot keep pace with construction, hence

these new systems cannot be sufficiently fast and

thoroughly be tested. This may seriously hamper the

development of future generations of software systems. One of

the new technologies to meet the challenges imposed on

software testing is model-based testing. Models can be

utilized in many ways throughout the product life-cycle,

including: improved quality of specifications, code

generation, reliability analysis, and test generation. In the

component based software development different already

build components are used. To ensure the quality of such

product component testing is very essential. But

problems may arise for the tester in component testing phase

due to the limited access of the component. In this paper

component based testing & model based testing strategies are

discussed and using a good strategy according to situation

quality of the product can be improved. If best suitable

practices are applied on new component based software it

become more reliable and chances of failure become

very less. Testing should be performed on every

component and whole software product before delivering it.

This paper will focus on the testing benefits from Model based

testing methods and component based testing to share our

experiences from a long term industrial evaluation on

automatically extracting models of GUI applications and

Integrated Intelligent Research (IIR) International Journal of Web Technology

Volume: 05 Issue: 01, June 2016, Pages: 75-80

 ISSN: 2278-2389

80

utilizing the extracted models to automate and support

functional ,Component & GUI testing.

References

[1] IEEE standard for Requirements

Specification (IEEE/ANSI Std. 830-1984) , IEEE

Computer Society, (830-1993) IEEE Recommended

Practice for Software Requirements Specifications

(ANSI), IEEE Standard for Software Unit Testing

(ANSI), IEEE Standard for Software Verification

and Validation Plans(ANSI)found at:

http://standards.ieee.org/catalog/it.html

[2] Proceedings of the Third IEEE International

Symposium on Requirements Engineering IEEE

Computer Society, 1997.

[3] Paulk, M., Curtis, B., Chrissis, M.B., and Weber,

C., Capability Maturity Model, Version 1.1 The

Software Engineering Institute, Carnegie

MellonUniversity.Foundat:

http://www.sei.cmu.edu/products/publications/96.reports/

96.ar.cmm.v1.1.html

[4] T. Yue, S. Ali, and L. Briand. Automated transition from

use cases to UML state machines to support state-based

testing. In Proc. of ECMFA’11, pages 115–131. Springer-

Verlag, 2011.

[5] X. Yuan, M. B. Cohen, and A. M. Memon. GUI

interaction testing: Incorporating event context. IEEE

Trans. Software Eng., 37(4):559–574, 2011.

[6] D.Amalfitano, A. R. Fasolino, P. Tramontana, S. De

Carmine, and A. M. Memon. Using GUI ripping for

automated testing of android applications. In Proc. of

ASE’12, pages 258–261, 2012.

[7] S.Arlt,P. Borromeo, M. Schäf, and A.

Podelski.Parameterized GUI tests. In Proc of Testing

Software and Systems, pages 247–262. 2012.

[8] A. Holmes and M. Kellogg, “Automating functional tests

using selenium,”in Agile Conference, 2006, July 2006,

pp. 6 pp.–275.

[9] B. Nguyen, B. Robbins, I. Banerjee, and A. Memon,

“Guitar:an innovative tool for automated testing of gui-

driven software,” Automated Software Engineering,pp.1–

41,2013.[Online].available:

http://dx.doi.org/10.1007/s105 15-013- 0128-9

[10] F. Gross, G. Fraser, and A. Zeller, “Search-based System

testing: High coverage, no false alarms,” in Proceedings

of the 2012 International Symposium on Software

Testing and Analysis, ser. ISSTA ’12. New York, NY,

USA: ACM, 2012, pp. 67–77.

[11] G. Fraser and A. Arcuri, “Whole test suite generation,”

IEEE Transactions on Software Engineering, vol. 39,

no. 2,

pp. 276–291, 2013.

[12] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit

testing engine for c,” in Proceedings of the 10th

European software engineering conference held jointly

with 13th ACMIGSOFT international symposium on

Foundations of software engineering, ser.SEC/FSE-

13.New York, NY, USA: ACM, 2005,pp.263–

272.[Online].

[13] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed

automated random testing,” in Proceedings of the

2005 ACM SIGPLAN conference on Programming

language design and implementation, ser. PLDI

’05.New York, NY,USA:ACM,2005,pp.213–223.

online].Available:http://doi.acm.org/1

45/1065010.1065036

[14] J. P. Galeotti, G. Fraser, and A. Arcuri, “Improving

search- based test suite generation with dynamic

symbolic execution,” in 2013 IEEE 24
th

 International

symposium on Software Reliability Engineering

(ISSRE),2013, pp. 360– 369.

[15] Weiqun Zheng,”Model-Based Software Component

Testing”, 2012.

