
Integrated Intelligent Research (IIR) International Journal of Web Technology

Volume: 05 Issue: 01, June 2016, Pages: 69-74

 ISSN: 2278-2389

69

Hardware Trojan Detection and Prevention Using

Pattern Matching Technique Along With Dummy

Logic

G.Alamelu
1
, P. Sridevi

2

1
Student, ECE Department, Sri Ramanujar Engineering College

2
Asst. Professor, ECE Department, Sri Ramanujar Engineering College.

Abstract—Hardware Trojan horses (HTH) have recently

emerged as a major security threat for field-programmable gate

arrays (FPGAs). Previous studies to protect FPGAs against

HTHs show that a considerable amount of logic resources are

left unused to be misused by malicious attacks. A low-level

protection and detection scheme for FPGAs is proposed by

filling the unused resources with dummy logic. The unused

resources at the device layout-level are identified and replaced

by dummy logic cells for different resources. An intrusion

detection system is used to detect the presence of Trojans using

pattern matching techniques. The proposed HTH detection and

protection scheme has been applied on Xilinx Virtex devices

implementing a set of IWLS benchmarks. The results show

that the chance of logic abuse can be significantly reduced by

employing the proposed HTH detection and protection scheme.

Experimental results also show that as compared to

unprotected designs, the proposed HTH scheme imposes no

performance and power penalties.

Keywords— field-programmable gate arrays (FPGAs),

hardware trojan horse, intrusion detection system, pattern

matching, dummy logic.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) with lower

nonrecurring engineering (NRE) cost and less time-to-market

(TTM) compared to application-specific integrated circuits

(ASICs) provide a promising single chip solution for

implementing embedded systems [2]. The reconfiguration

property of FPGAs provides designers the flexibility of

implementing a wide range of applications. This property also

enables the embedded system designers to apply design

updates even after circuit implementation and shipment. In

contrast to ASICs, however, the reconfigurability of FPGAs

makes them more susceptible to design modification even after

chip being manufactured [7]. Therefore, the secure

implementation of an embedded system using FPGAs not only

requires employing protection schemes during design and

manufacturing process similar to ASICs, but also requires

secured protection mechanisms against malicious attacks after

device shipment.

Recently, hardware trojan horses (HTH) insertion and

detection have received significant attention in the literature

[6], [9], [17], mainly because they can maliciously disturb the

normal functionality of a circuit or change its characteristics.

This, in turn, can affect the reliability and security of a chip.

Although a great deal of research has been conducted towards

insertion of HTHs and/or detection/prevention against them in

ASICs, there have been a limited amount of studies

investigating HTH insertion and detection in FPGAs, where

not only silicon HTH can be inserted in the device, application

space HTH can also be inserted in the design [8], [23]. Such

studies mostly focus on insertion and detection of a HTH or

Design For Hardware Trust (DFHT).

Previous HTH studies on FPGAs can be classified into either

high-level techniques using hardware description languages or

low-level techniques. While high-level techniques [15] aim at

higher levels of design process, low-level ones [7] perform

insertions, detections, or DFHT at bitstream or device levels. In

[18], the authors present a technique, called BISA, to fill the

unused space in layout of a design with functional standard

cells instead of filler cells. These cells form a circuit with

specific I/O signature; hence, any modification in BISA will

alter the signature. This can make fabrication-stage HTH

insertion difficult and detectable, unless the inserted HTH only

affects the original design cells, where BISA cannot detect the

inserted HTH. The main aim of the method proposed in [13] is

to utilize all synthesized resources on all clock cycles, so there

will be no room within the hardware for HTH inclusion. This

requires accurate and fully specified design in all levels of

abstraction. While it is possible to check whether a design

meets the mentioned criteria, it would be difficult to specify a

design such that all of its resources are utilized all the time,

particularly in such a way that their operation will be essential

to appropriate operation of the whole circuit. An approach to

implement various HTHs has been proposed in [14]. This

approach cannot be detected by ring oscillator-based protection

mechanisms. A low-level technique to manipulate the

configuration bitstream has been proposed in [7]. In this

technique, the unused parts of bitstreams are detected and a

properly presynthesized, preplaced, and prerouted bitstream of

a HTH is inserted to the original one. Such HTH insertion

scheme cannot be applied to a design which is evenly

distributed throughout the FPGA fabric.

In this letter, we propose a low-level HTH detection and

prevention scheme by running the logic through an intrusion

detection system and filling the unused resources of the FPGA

with low-level dummy logic (LLDL). The proposed FPGA

based intrusion detection system uses pattern matching

detection to check specific matching criteria in every incoming

packet. Ethernet output is sent to the FPGA where the IP

packet is parsed and filtered. Incoming packets are stored in

SDRAM and Bloom Filter is maintained in SRAM. Patterns

are compared against the payload of a packet or values within

the header of a packet. A match is alerted a human analyst to

determine the next course of action. The unused resources

Integrated Intelligent Research (IIR) International Journal of Web Technology

Volume: 05 Issue: 01, June 2016, Pages: 69-74

 ISSN: 2278-2389

70

within the FPGA device are identified and dummy logic cells

are proposed for different resources of FPGAs. The proposed

scheme significantly reduces the chance of application space

HTH attacks by giving no free configurable resource for HTHs

insertion in the design’s bitstream. The malicious inclusion can

either disturb the functionality of the original design, incur

device fluctuations such as warming up or transistor aging as in

[7]. This is in contrast to high-level protection techniques that

may leave considerable amount of logic resources to be

misused by attackers. Additionally, by employing the proposed

low-level technique, the bitstream reverse engineering

becomes much more difficult for the purpose of leaking design

specifications, e.g., number, location, and configuration of

utilized resources, which can facilitate subsequent power

analysis attacks [8].

The proposed protection scheme could be automatically

applied to the designs after placement and routing stages. In

addition, the proposed LLDL scheme does not alter the

placement and routing of the original design and only exploits

the unused configurable resources in the FPGA. We have

applied the proposed scheme on Xilinx Virtex devices

implementing a set of IWLS 2005 benchmarks [1]. The

experimental results reveal that our proposed scheme does not

impose any power or performance overheads as compared to

the original nonprotected designs. Our results also show that

the proposed scheme increases the utilization of FPGAs up to

15X without having any power or performance overheads. The

rest of this letter is organized as follows. Section II describes

the proposed LLDL scheme. Section III presents experimental

setup and results. Finally, Section IV concludes the letter.

II. THE PROPOSED SCHEME

In this section, we first discuss low-level configurable

resources available in a typical FPGA. Then, the insertion of

dummy logic and dummy routing resources are presented in

the subsequent subsections.

A. Intrusion Detection System

Fig.1. Block Diagram of IDS FPGA architecture

This function is performed in three stages. Processing begins

by parsing the TCP/IP header. All packets have their TCP/IP

header decoded. The header information is matched against

rules in the Snort rule set for matches. If any packet matches

any rule, it is sent along to string detection engines for payload

inspection and the packet number is passed onto the final

processing stage. If there is no match, then the packet is

discarded and no further processing is performed on that

packet. The payload inspection block takes each payload that

meets the header criteria and compares it against payload

strings found within the rule set. If a payload does not match

any strings, it is discarded and no further processing is

performed on the packet. However, if the payload does contain

one or more strings from the rule set, the payload inspection

block sends which strings have been matched, along with the

packet number to the final processing stage. In the final

processing stage, the matched headers are correlated with the

matched payload strings to see if a complete rule has been

matched. This block can either check for false positive results

from the string comparison stage or it can pass results on for

further processing. This block passes its results to the output

interface of the FPGA.

B. Low-Level Configurable Resources in FPGA

LLDLs are added to the original circuit after placement and

routing stage. At this stage, the native circuit description

(NCD) file of the original circuit could be converted to the

human readable description at the physical-level of device.

Some vendors offer layout-level hardware description

language (LHDL) to directly describe a device functionality

using device resources. As an example, Xilinx provides a

language, called Xilinx description language (XDL) [3], which

can be employed to efficiently design a circuit with available

device resources. Such vendors offer toolsets to convert the

NCD file to its LHDL equivalent format. The produced LHDL

format similar to the NCD file contains all of the low-level

configuration state of logic and routing resources in the FPGA.

Having the LHDL format of the original design, the proposed

LLDL could be inserted by exploiting low-level FPGA

resources.

Although the device resources in LHDLs vary among different

series of FPGAs, they could be categorized under the following

two groups: 1) programmable logic points (PLP); and 2)

programmable interconnect points (PIPs). PLPs include the

resources implementing a special logic which are typically

grouped in a cluster. State-of-the-art FPGAs offer various

types of PLPs for a single device type. The most common PLP

uses look-up tables (LUTs), called PLPL. This type of PLP is

composed of several LUTs, Flip-Flops (FFs), and Multiplexers

and can implement both combinational and sequential circuits.

Other types of PLPs may implement memory blocks, hard

logic multipliers, or even digital aignal processing (DSP)

blocks. For instance, Xilinx Virtex-II series have more than

twenty PLP types such as block random access memories

(BRAM), SLICE, BSCAN, IOB, ICAP, MULT18 X18 ,

PCILOGIC, STARTUP, and VCC [20]. PIPs, on the other

hand are programmable interconnects which provide the

connectivity between PLPs. In the subsequent subsections, we

will discuss the LLDL insertion in PLP and PIP resources.

C. Dummy PLPL Insertion

After the placement and routing of the original design, FPGA

clusters will be in either partially utilized or unutilized states.

In order to protect partially utilized PLPLs against HTH

insertion, the unused resources such as FFs, LUTs, and

Multiplexers should be instantiated in the LHDL file in a way

Integrated Intelligent Research (IIR) International Journal of Web Technology

Volume: 05 Issue: 01, June 2016, Pages: 69-74

 ISSN: 2278-2389

71

that it does not disturb the functionality of the original design.

However, for the unutilized PLPL, the entire PLPL could be

filled with a random dummy PLPL. We intentionally use

random configuration for unused resources in order to avoid

any distinguishable pattern in the dummy logic. However, if

the original design contains limited or specific type of

configurations, we can fill the dummy logic with similar

configurations. A PLPL consists of a LUT-4 cell, a FF,

multiple multiplexers, and hard logic cells, as shown in Fig. 1.

Configuration data of a PLP determines its functionality. It is

notable to mention that the intra-PLP connections are described

in the LHDL file after the placement and routing stages.

Listing 1 illustrates the description of a PLPL in the XDL

format. As shown in Listing 1, the configuration of each

resource in the PLP is presented in the XDL format. For

instance, the function of a LUT is described as a boolean

function of the four inputs. If a LUT has not been utilized, its

corresponding state in the XDL format will be demonstrated as

OFF.

Fig. 2. Virtex-II Slice (Top Half) [21].

Listing 1. Cluster description in a sample XDL file.

The proposed LLDL protection scheme first automatically

detects the unused clusters and then fills them with dummy

PLPLs. Next, the unused resources in partially utilized clusters

can be detected and filled up with dummy logic. Note that the

inputs of any instantiated PLP should be driven by a net, and

also its outputs should drive a net; otherwise, this PLP will be

removed automatically during bitstream generation. Therefore,

we insert a net per each output of a dummy PLP and also

instantiate a single net to drive all inputs of the dummy PLP.

Listing 2 shows a dummy net that drives all used inputs of a

dummy PLP. By filling up partially used and unused clusters in

the FPGA, there will be no freer cluster in the FPGA for

possible low-level HTH insertions. Nevertheless, since a

dummy logic does not implement any specific function, one

can replace a HTH instead of the dummy logic without making

any impact on the functionality of the original system.

However, differentiating between the dummy logic and the

original design especially after bitstream generation is a very

challenging task. This is because the configuration bits are not

distinguishable due to the confidentiality of the bitstream

format.

Listing 2. Net description in a sample XDL file.

Listing 3. Filling an unused BRAM with random data in an

XDL file

D. Other Dummy PLP Insertion

Except the PLPL which could be partially utilized, other PLPs

have only two states: 1) used; and 2) unused. To protect a

design against HTH insertion, unused PLPs are configured

with a random configuration data. Clearly, the used PLPs will

not be manipulated during the dummy logic insertion. As an

example, if an unused BRAM is detected in the LHDL file, it

will be filled up with a bunch of random data. This has been

illustrated in Listing 3.

E. Dummy PIP Insertion

FPGAs comprise numerous wires spread out among logic

blocks to provide appropriate routability. Each wire segment

may drive or be driven by several other segments. For any wire

segment, a PIP determines which of its endpoint segments be

activated. Hence, the definition of a PIP is as “pip tileName

srcName-> destName,” in which, tileName refers to the

encompassing tile (or cluster), srcName refers to the name of

the source wire, and destName indicates the name of the

destination wire. PIPs compose a major part of bitstream bits.

For example, a Virtex2 XC2V80 device contains 720 752 PIPs

which occupy about 48% of the device bitstream. However,

PIPs that drive a unique destination within a cluster cannot be

used simultaneously. Knowing this fact, we define a dummy

net in the LHDL file and add a PIP “pip TA->B ”, if it meets

the following conditions:

1 there should not be any “pip TX->B ,” neither in the original

nor in the currently added PIPs;

2 there should not be any “pip TA->Y ,” in the primary PIPs.

Integrated Intelligent Research (IIR) International Journal of Web Technology

Volume: 05 Issue: 01, June 2016, Pages: 69-74

 ISSN: 2278-2389

72

The first rule is necessary to avoid the cases that multiple wire

segments drive a unique segment, and the second rule prevents

adding extra load to the nets of the original design to avoid

performance overheads.

F. Discussion: Possible Attacks and Configuration Encryption

Although brute-forcing the device logic to discriminate the

dummies based on monitoring the design’s functionality is

theoretically possible, due to large number of resources inside

a FPGA, it is extremely difficult to change the logic

configuration one by one and give an essentially complete test

pattern to verify the correct functionality of the design,

particularly for complex and sequential circuits. Another way

is to arbitrary place a HTH (without finding dummy logic),

which requires no overlapping between resources of the

original and HTH circuits. This is also infeasible, because for

example if we consider half of the device resources to be

empty and the HTH is composed of only 50 LUTs (which is

less than 5% of total LUTs in smallest devices), the probability

of having no overlap is approximately). Furthermore, since we

have not left any room for adding new PIPs, the attacker

cannot introduce new interconnect between the hypothetical

HTH resources. A full reverse engineering, which requires the

complete database between bitstream bits and corresponding

resources can make it possible to generate the modified design

XDL, but yet not the original design. Moreover, the available

tools [12], [5], [4] have very limited resource database and

only are available to extract a few set of PIPs as a plain text, so

they are entirely unable to reconstruct the interconnect which

comprises most of the configuration bits. Note it is also

possible to distinguish a chunk of dummy LUTs by accurately

monitoring the signal activities, if a considerable portion of the

original device is unutilized. This issue can be resolved by

choosing a near-to-minimum size device or evenly distributing

the original design logic within the FPGA using simple

synthesis constraints.

Fig. 3. Functional verification.

Listing 4. Stimuli module for functional verification.

Another argument regarding the proposed scheme is that

configuration encryption is sufficient to ensure the device

security. We should note that not all of device families support

bitstream encryption; even if they do, there are several

successful works, usually based on power analysis attacks that

break bitstream encryption [11]. Therefore, our scheme can be

used on top of other protection mechanisms as configuration

encryption. The proposed scheme protects the design against

insertion of malicious objects in free resources of the device

and is irrelevant to the modification made on the base design

III. EXPERIMENTAL SETUP AND RESULTS

Here, we will first verify the functionality of a design after

applying the proposed HTH protection scheme. Then, the

original and modified designs will be compared in terms of

performance and power consumption. Finally, the resource

utilization of the original and modified designs will be

discussed. In these experiments, Xilinx ISE Design Suite 10.1

is used to implement a set of IWLS benchmark circuits on the

Xilinx Virtex-II device. Then, performance reports are

extracted by post placement and routing simulations in Xilinx

Timing Analyzer [19]. In addition, power reports are extracted

by Xilinx XPower tool [22]. Utilization reports are also

adopted from Xilinx ISE utilization reports.

A. Functional Verification

In order to perform functional verification, post placement and

routing simulation models are generated for both original and

protected designs using Xilinx netgen command. This

command produces a Verilog file along with the corresponding

standard delay format (SDF) file from the post placement and

routing NCD file. Then, as it is shown in Listing 4, the top

modules of both the original and protected designs are

instantiated and wrapped up in an another Verilog module

named stimuli. The instances of the original and protected

designs share the same inputs. In order to verify the

functionality of the protected design against the original

design, the equivalent outputs are first XORed. Then, the

output of all XOR gates are ORed to examine the exact match

between the outputs of both designs. Note that the generated

HDL files contain Xilinx primitives as LUT modules and

BRAMs. To this end, the SIMPRIM library [16] is added to the

Mentor Modelsim [10] simulator. As it is shown in Fig. 2,

simulation results reveal that the output of two designs are

exactly identical. This proves that the proposed protection

scheme does not disturb the functionality of the original

design. To ensure whether all added instances exist in the final

bitstream, we convert back the post placement and routing

NCD to XDL file to remove possible dangling instances. The

results show that dummy logic still exists in the XDL file,

which proves that they have been added to the design

appropriately.

Table I Power and Performance of Protected Versus

Unprotected Designs

B. Performance

Critical path delay of both original and protected designs are

obtained from the Xilinx Timing Analyzer reports. This tool

Integrated Intelligent Research (IIR) International Journal of Web Technology

Volume: 05 Issue: 01, June 2016, Pages: 69-74

 ISSN: 2278-2389

73

gets an NCD file and analyzes the timing constraints of the

design. As shown in Table I, the pad-to-pad critical path delay

of both designs are the same. Hence, our scheme does not

impose any performance overhead to the original design. This

is one of the main advantage of the proposed LLDL scheme as

compared to the HLDL schemes which can negatively affect

the performance of the original design.

C. Power Consumption

To measure the power consumption of the mapped designs,

Xilinx XPower Analyzer is used. This tool gets the NCD file

beside an optional activity file (VCD or SAIF) to estimate the

power consumption. The activity file is produced by ModelSim

simulations described earlier in Section III-A. Table I

illustrates the power consumption of the original (unprotected)

and protected designs. As it is shown, although the protected

design utilizes more resources than the original design, it

consumes almost the same power as the original design. This is

due to the fact that static power of a FPGA is constant,

regardless of the implemented design. That is whether a

resource is utilized or not, it consumes almost the same static

power in the FPGA. In addition, the dummy resources in the

protected design are not triggered by any input, i.e., although

their input nets are configured, we choose to not drive them

with any active signal (by the second criteria in Section II-B)

to cause any switching. Therefore, a protected design does not

consume further dynamic power as compared to the original

design.

Table Ii Plp and Pip Utilization: Protected Versus Unprotected

Designs

Fig. 3. Protected versus unprotected design. (a) Unprotected

usb_phy. (b) Protected usb_phy.

D. Resource Utilization

Unused resources are potential candidates to be used by low-

level HTHs. Therefore, resource utilization of a design in

FPGAs can be used as a measure of susceptibility to the HTH

insertion. High resource utilization reduces the chance of a

HTH insertion. In the experiments, the resource utilization is

measured before and after applying the protection scheme. The

proposed protection scheme instantiates all unused PLPs in the

target FPGA. However, as mentioned before in Section II, it

cannot utilize all of the available PIPs. To evaluate the

resource utilization, a set of IWLS benchmark circuits is

implemented on a minimum sized FPGA. As shown in Table

II, on average, the number of PIPs is increased by 15X in the

protected design as compared to the original unprotected one.

In addition, the PLP utilization is increased to 100% for all of

protected designs. As a result, the resource utilization is

significantly increased after applying the proposed protection

scheme as compared to the original design. Note that the

provided numbers for unprotected PLPs account only for the

LUTs, i.e., several other primitives such as multipliers and

BRAMs are entirely unused and significantly reduce the

overall PLP utilization. Fig. 3 illustrates the resource utilization

of a sample unprotected circuit (usb_phy) from IWLS circuits

vs. the same circuit after being protected by applying the

proposed LLDL scheme. Note that the high resource utilization

is achieved in the proposed scheme while no power and

performance penalties are imposed to the system

IV. CONCLUSION

In this letter, we proposed a low-level protection scheme

against HTH insertion in the bitstream of FPGAs. This scheme

is based on utilizing unused resources of an FPGA. Functional

verification has been performed in order to assure the

correctness of the functionality of the circuit after applying the

protection scheme. Experimental results show that the

proposed scheme increases the utilization of FPGAs up to 15X

without having any impact on power or performance.

References

[1] C. Albrecht, “Iwls 2005benchmarks,” Int. Workshop for

Logic Synthesis (IWLS), 2005 [Online]. Available:

http://www.iwls.org

[2] H. Asadi and M. B. Tahoori, “Analytical techniques for

soft error rate modeling and mitigation of FPGA-based

designs,” IEEE Trans. Very Large Scale Integr., vol. 15,

no. 12, pp. 1320–1331, Dec. 2007.

[3] C. Beckhoff, D. Koch, and J. Torresen, “The xilinx design

language (xdl): Tutorial and use cases,” in IEEE Int.

Workshop Reconfigurable Commu.-Centric Systems-on-

Chip (ReCoSoC), pp. 1–8.

[4] F. Benz, A. Seffrin, and S. A. Huss, “Bil: A tool-chain for

bitstream reverse-engineering,” in IEEE FPL., 2012, pp.

735–738.

[5] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona,

J. H. Anderson, S. Brown, and T. Czajkowski, “Legup:

High-level synthesis for fpga-based processor/accelerator

systems,” ACM/SIGDA FPGA., pp. 33–36, 2011.

[6] R. S. Chakraborty, S. Narasimhan, and S. Bhunia,

“Hardware trojan: Threats and emerging solutions,” in

Proc. IEEE Int. High Level Design Validation Test

Workshop (HLDVT), 2009, pp. 166–171, IEEE.

Integrated Intelligent Research (IIR) International Journal of Web Technology

Volume: 05 Issue: 01, June 2016, Pages: 69-74

 ISSN: 2278-2389

74

[7] R. Chakraborty, I. Saha, A. Palchaudhuri, and G. Naik,

“Hardware trojan insertion by direct modification of fpga

configuration bitstream,” IEEE Des. Test, vol. 30, no. 2,

pp. 45–54, Apr. 2013.

[8] S. Drimer, “Security for Volatile FPGAs,” University of

Cambridge, Computer Laboratory, Rapport technique

UCAM-CLTR-763, 2009.

[9] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor,

“Trustworthy hardware: Identifying and classifying

hardware trojans,” Computer, vol. 43, no. 10, pp. 39–46,

2010.

[10] Modelsim [Online]. Available:

http://www.mentor.com/products/fv/modelsim/

[11] A. Moradi, A. Barenghi, T. Kasper, and C. Paar, “On the

vulnerability of fpga bitstream encryption against power

analysis attacks: Extracting keys from xilinx virtex-ii

fpgas,” in Proc. 18th ACM Conf. Comput.Commun.

Security, 2011, pp. 111–124.

[12] J.-B. Note and E. Rannaud, “From the bitstream to the

netlist,” FPGA, vol. 8, pp. 264–264, 2008.

[13] M. Potkonjak, “Synthesis of trustable ics using untrusted

cad tools,” in Proc. ACM DAC, 2010, pp. 633–634.

[14] J. Rilling, D. Graziano, J. Hitchcock, T. Meyer, X. Wang,

P. Jones, and J. Zambreno, “Circumventing a ring

oscillator approach to fpga-based hardware trojan

detection,” in IEEE ICCD. , 2011, pp. 289–292.

[15] H. Salmani and M. Tehranipoor, “Analyzing circuit

vulnerability to hardware trojan insertion at the behavioral

level,” in Proc. IEEE DFT, 2013, pp. 190–195.

[16] Simulation Libraries. [Online]. Available:

http://www.xilinx.com/itp/xilinx10/isehelp/ise_c_simulati

on_libraries.htm

[17] M. Tehranipoor and F. Koushanfar, “A survey of hardware

trojan taxonomy and detection,” IEEE Des. Test, vol. 27,

no. 1, pp. 10–25, Jan.- Feb. 2010.

[18] K. Xiao and M. Tehranipoor, “Bisa: Built-in self-

authentication for preventing hardware trojan insertion,”

IEEE HOST, pp. 45–50, 2013, IEEE.User Guide, Xilinx,

“Timing Analyzer Guide - 2.1i”.

[19] User Guide, Xilinx, “Virtex-II platform FPGA User

Guide,” Mar. 2005.

[20] Data Sheet, Xilinx, “Virtex-II Platform FPGAs: Complete

Data Sheet,” Nov. 2007.

[21] “Xpower Analyzer,” [Online]. Available:

http://www.xilinx.com/support/documentation/sw_manual

s/xilinx14_6/isehelp_start.htm

[22] J. X. Zheng, E. Chen, and M. Potkonjak, “A benign

hardware trojan on fpga-based embedded systems,” in

Proc. IEEE FPL, 2012, pp. 464–470.

[23] M. Attig and J. Lockwood. A Framework for Rule

Processing in Reconfigurable Network Systems. IEEE

Symposium on Field-Programmable Custom Computing

Machines, April 18-20, 2005.

[24] M. Attig and J. Lockwood. SIFT: Snort Intrusion Filter

for TCP. IEEE Symposium on High Speed Interconnects,

August 17-19, 2005, Stanford, CA.

[25] Z. K. Baker and V. K. Prassanna. A Computationally

Efficient Engine for Flexible Intrusion Detection. IEEE

transactions on very large scale integration (vlsi) systems,

vol. 13, no. 10, October 2005.

[26] R. Bejtlich. Extrusion Detection: Security Monitoring for

Internal Intrusions. Addison Wesley. 2006.

[27] B. Bloom. Space/Time Trade-offs in Hash Coding with

Allowable Errors. Communications of the ACM, July,

1970, pp. 422-426.

[28] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, J.

Lockwood. Deep Packet Inspection using Parallel Bloom

Filters Bloom Filters : A Tutorial, Analysis, and Survey by

James Blustein and Amal El-Maazawi, Faculty of

Computer Science, Dalhousie University, B3H 1W5,

Canada.

[29] J. W. Lockwood, N. Naufel, J. S. Turner, and D. E.

Taylor. Reprogrammable Network PacketProcessing on

the Field Programmable Port Extender (FPX). In ACM

International Symposium on Field Programmable Gate

Arrays (FPGA’2001), pages 87–93, Monterey, CA, USA,

Feb. 2001.

[30] M. Mitzenmacher. Compressed Bloom Filters. IEEE/ACM

transactions on networking, vol. 10,no. 5, October 2002.

[31] M.V. Ramakrishna. A Simple Perfect Hashing Method for

Static Sets. Proceedings of the Fourth

[32] International Conference on Computing and Information,

1992, pp. 401-404.

[33] H. Song and J. Lockwood. Multi-pattern Signature

Matching for Hardware Network Intrusion Detection

Systems. IEEE Globecom 2005, St. Louis, MO, Nov. 28,

2005, pp. CN-02-3.

