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Abstract—Hardware Trojan horses (HTH) have recently 

emerged as a major security threat for field-programmable gate 

arrays (FPGAs). Previous studies to protect FPGAs against 

HTHs show that a considerable amount of logic resources are 

left unused to be misused by malicious attacks. A low-level 

protection and detection scheme for FPGAs is proposed by 

filling the unused resources with dummy logic. The unused 

resources at the device layout-level are identified and replaced 

by dummy logic cells for different resources. An intrusion 

detection system is used to detect the presence of Trojans using 

pattern matching techniques. The proposed HTH detection and 

protection scheme has been applied on Xilinx Virtex devices 

implementing a set of IWLS benchmarks. The results show 

that the chance of logic abuse can be significantly reduced by 

employing the proposed HTH detection and protection scheme. 

Experimental results also show that as compared to 

unprotected designs, the proposed HTH scheme imposes no 

performance and power penalties. 
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I. INTRODUCTION 

 

Field-Programmable Gate Arrays (FPGAs) with lower 

nonrecurring engineering (NRE) cost and less time-to-market 

(TTM) compared to application-specific integrated circuits 

(ASICs) provide a promising single chip solution for 

implementing embedded systems [2]. The reconfiguration 

property of FPGAs provides designers the flexibility of 

implementing a wide range of applications. This property also 

enables the embedded system designers to apply design 

updates even after circuit implementation and shipment. In 

contrast to ASICs, however, the reconfigurability of FPGAs 

makes them more susceptible to design modification even after 

chip being manufactured [7]. Therefore, the secure 

implementation of an embedded system using FPGAs not only 

requires employing protection schemes during design and 

manufacturing process similar to ASICs, but also requires 

secured protection mechanisms against malicious attacks after 

device shipment. 

 

Recently, hardware trojan horses (HTH) insertion and 

detection have received significant attention in the literature 

[6], [9], [17], mainly because they can maliciously disturb the 

normal functionality of a circuit or change its characteristics. 

This, in turn, can affect the reliability and security of a chip. 

Although a great deal of research has been conducted towards 

insertion of HTHs and/or detection/prevention against them in 

ASICs, there have been a limited amount of studies 

investigating HTH insertion and detection in FPGAs, where 

not only silicon HTH can be inserted in the device, application 

space HTH can also be inserted in the design [8], [23]. Such 

studies mostly focus on insertion and detection of a HTH or 

Design For Hardware Trust (DFHT). 

 

Previous HTH studies on FPGAs can be classified into either 

high-level techniques using hardware description languages or 

low-level techniques. While high-level techniques [15] aim at 

higher levels of design process, low-level ones [7] perform 

insertions, detections, or DFHT at bitstream or device levels. In 

[18], the authors present a technique, called BISA, to fill the 

unused space in layout of a design with functional standard 

cells instead of filler cells. These cells form a circuit with 

specific I/O signature; hence, any modification in BISA will 

alter the signature. This can make fabrication-stage HTH 

insertion difficult and detectable, unless the inserted HTH only 

affects the original design cells, where BISA cannot detect the 

inserted HTH. The main aim of the method proposed in [13] is 

to utilize all synthesized resources on all clock cycles, so there 

will be no room within the hardware for HTH inclusion. This 

requires accurate and fully specified design in all levels of 

abstraction. While it is possible to check whether a design 

meets the mentioned criteria, it would be difficult to specify a 

design such that all of its resources are utilized all the time, 

particularly in such a way that their operation will be essential 

to appropriate operation of the whole circuit. An approach to 

implement various HTHs has been proposed in [14]. This 

approach cannot be detected by ring oscillator-based protection 

mechanisms. A low-level technique to manipulate the 

configuration bitstream has been proposed in [7]. In this 

technique, the unused parts of bitstreams are detected and a 

properly presynthesized, preplaced, and prerouted bitstream of 

a HTH is inserted to the original one. Such HTH insertion 

scheme cannot be applied to a design which is evenly 

distributed throughout the FPGA fabric. 

 

In this letter, we propose a low-level HTH detection and 

prevention scheme by running the logic through an intrusion 

detection system and filling the unused resources of the FPGA 

with low-level dummy logic (LLDL). The proposed FPGA 

based intrusion detection system uses pattern matching 

detection to check specific matching criteria in every incoming 

packet. Ethernet output is sent to the FPGA where the IP 

packet is parsed and filtered. Incoming packets are stored in 

SDRAM and Bloom Filter is maintained in SRAM. Patterns 

are compared against the payload of a packet or values within 

the header of a packet. A match is alerted a human analyst to 

determine the next course of action. The unused resources 
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within the FPGA device are identified and dummy logic cells 

are proposed for different resources of FPGAs. The proposed 

scheme significantly reduces the chance of application space 

HTH attacks by giving no free configurable resource for HTHs 

insertion in the design’s bitstream. The malicious inclusion can 

either disturb the functionality of the original design, incur 

device fluctuations such as warming up or transistor aging as in 

[7]. This is in contrast to high-level protection techniques that 

may leave considerable amount of logic resources to be 

misused by attackers. Additionally, by employing the proposed 

low-level technique, the bitstream reverse engineering 

becomes much more difficult for the purpose of leaking design 

specifications, e.g., number, location, and configuration of 

utilized resources, which can facilitate subsequent power 

analysis attacks [8].  

 

The proposed protection scheme could be automatically 

applied to the designs after placement and routing stages. In 

addition, the proposed LLDL scheme does not alter the 

placement and routing of the original design and only exploits 

the unused configurable resources in the FPGA. We have 

applied the proposed scheme on Xilinx Virtex devices 

implementing a set of IWLS 2005 benchmarks [1]. The 

experimental results reveal that our proposed scheme does not 

impose any power or performance overheads as compared to 

the original nonprotected designs. Our results also show that 

the proposed scheme increases the utilization of FPGAs up to 

15X without having any power or performance overheads. The 

rest of this letter is organized as follows. Section II describes 

the proposed LLDL scheme. Section III presents experimental 

setup and results. Finally, Section IV concludes the letter. 

 

II. THE PROPOSED SCHEME 

 

In this section, we first discuss low-level configurable 

resources available in a typical FPGA. Then, the insertion of 

dummy logic and dummy routing resources are presented in 

the subsequent subsections. 

 

A. Intrusion Detection System 

 
 

Fig.1. Block Diagram of IDS FPGA architecture 

 

This function is performed in three stages. Processing begins 

by parsing the TCP/IP header. All packets have their TCP/IP 

header decoded. The header information is matched against 

rules in the Snort rule set for matches. If any packet matches 

any rule, it is sent along to string detection engines for payload 

inspection and the packet number is passed onto the final 

processing stage. If there is no match, then the packet is 

discarded and no further processing is performed on that 

packet. The payload inspection block takes each payload that 

meets the header criteria and compares it against payload 

strings found within the rule set. If a payload does not match 

any strings, it is discarded and no further processing is 

performed on the packet. However, if the payload does contain 

one or more strings from the rule set, the payload inspection 

block sends which strings have been matched, along with the 

packet number to the final processing stage. In the final 

processing stage, the matched headers are correlated with the 

matched payload strings to see if a complete rule has been 

matched. This block can either check for false positive results 

from the string comparison stage or it can pass results on for 

further processing. This block passes its results to the output 

interface of the FPGA.  

 

B. Low-Level Configurable Resources in FPGA 

LLDLs are added to the original circuit after placement and 

routing stage. At this stage, the native circuit description 

(NCD) file of the original circuit could be converted to the 

human readable description at the physical-level of device. 

Some vendors offer layout-level hardware description 

language (LHDL) to directly describe a device functionality 

using device resources. As an example, Xilinx provides a 

language, called Xilinx description language (XDL) [3], which 

can be employed to efficiently design a circuit with available 

device resources. Such vendors offer toolsets to convert the 

NCD file to its LHDL equivalent format. The produced LHDL 

format similar to the NCD file contains all of the low-level 

configuration state of logic and routing resources in the FPGA. 

Having the LHDL format of the original design, the proposed 

LLDL could be inserted by exploiting low-level FPGA 

resources. 

 

Although the device resources in LHDLs vary among different 

series of FPGAs, they could be categorized under the following 

two groups: 1) programmable logic points (PLP); and 2) 

programmable interconnect points (PIPs). PLPs include the 

resources implementing a special logic which are typically 

grouped in a cluster. State-of-the-art FPGAs offer various 

types of PLPs for a single device type. The most common PLP 

uses look-up tables (LUTs), called PLPL. This type of PLP is 

composed of several LUTs, Flip-Flops (FFs), and Multiplexers 

and can implement both combinational and sequential circuits. 

Other types of PLPs may implement memory blocks, hard 

logic multipliers, or even digital aignal processing (DSP) 

blocks. For instance, Xilinx Virtex-II series have more than 

twenty PLP types such as block random access memories 

(BRAM), SLICE, BSCAN, IOB, ICAP, MULT18 X18 , 

PCILOGIC, STARTUP, and VCC [20]. PIPs, on the other 

hand are programmable interconnects which provide the 

connectivity between PLPs. In the subsequent subsections, we 

will discuss the LLDL insertion in PLP and PIP resources. 

 

C. Dummy PLPL Insertion 

After the placement and routing of the original design, FPGA 

clusters will be in either partially utilized or unutilized states. 

In order to protect partially utilized PLPLs against HTH 

insertion, the unused resources such as FFs, LUTs, and 

Multiplexers should be instantiated in the LHDL file in a way 
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that it does not disturb the functionality of the original design. 

However, for the unutilized PLPL, the entire PLPL could be 

filled with a random dummy PLPL. We intentionally use 

random configuration for unused resources in order to avoid 

any distinguishable pattern in the dummy logic. However, if 

the original design contains limited or specific type of 

configurations, we can fill the dummy logic with similar 

configurations. A PLPL consists of a LUT-4 cell, a FF, 

multiple multiplexers, and hard logic cells, as shown in Fig. 1. 

Configuration data of a PLP determines its functionality. It is 

notable to mention that the intra-PLP connections are described 

in the LHDL file after the placement and routing stages. 

Listing 1 illustrates the description of a PLPL in the XDL 

format. As shown in Listing 1, the configuration of each 

resource in the PLP is presented in the XDL format. For 

instance, the function of a LUT is described as a boolean 

function of the four inputs. If a LUT has not been utilized, its 

corresponding state in the XDL format will be demonstrated as 

OFF.  

 

 
 

Fig. 2. Virtex-II Slice (Top Half) [21]. 

 

 
Listing 1. Cluster description in a sample XDL file. 

 

The proposed LLDL protection scheme first automatically 

detects the unused clusters and then fills them with dummy 

PLPLs. Next, the unused resources in partially utilized clusters 

can be detected and filled up with dummy logic. Note that the 

inputs of any instantiated PLP should be driven by a net, and 

also its outputs should drive a net; otherwise, this PLP will be 

removed automatically during bitstream generation. Therefore, 

we insert a net per each output of a dummy PLP and also 

instantiate a single net to drive all inputs of the dummy PLP. 

Listing 2 shows a dummy net that drives all used inputs of a 

dummy PLP. By filling up partially used and unused clusters in 

the FPGA, there will be no freer cluster in the FPGA for 

possible low-level HTH insertions. Nevertheless, since a 

dummy logic does not implement any specific function, one 

can replace a HTH instead of the dummy logic without making 

any impact on the functionality of the original system. 

However, differentiating between the dummy logic and the 

original design especially after bitstream generation is a very 

challenging task. This is because the configuration bits are not 

distinguishable due to the confidentiality of the bitstream 

format. 

 

 
 

Listing 2. Net description in a sample XDL file. 

 

 
 

Listing 3. Filling an unused BRAM with random data in an 

XDL file 

 

D. Other Dummy PLP Insertion 

Except the PLPL which could be partially utilized, other PLPs 

have only two states: 1) used; and 2) unused. To protect a 

design against HTH insertion, unused PLPs are configured 

with a random configuration data. Clearly, the used PLPs will 

not be manipulated during the dummy logic insertion. As an 

example, if an unused BRAM is detected in the LHDL file, it 

will be filled up with a bunch of random data. This has been 

illustrated in Listing 3. 

 

E. Dummy PIP Insertion 

FPGAs comprise numerous wires spread out among logic 

blocks to provide appropriate routability. Each wire segment 

may drive or be driven by several other segments. For any wire 

segment, a PIP determines which of its endpoint segments be 

activated. Hence, the definition of a PIP is as “pip tileName 

srcName-> destName,” in which, tileName refers to the 

encompassing tile (or cluster), srcName refers to the name of 

the source wire, and destName indicates the name of the 

destination wire. PIPs compose a major part of bitstream bits. 

For example, a Virtex2 XC2V80 device contains 720 752 PIPs 

which occupy about 48% of the device bitstream. However, 

PIPs that drive a unique destination within a cluster cannot be 

used simultaneously. Knowing this fact, we define a dummy 

net in the LHDL file and add a PIP “pip TA->B ”, if it meets 

the following conditions: 

1 there should not be any “pip TX->B ,” neither in the original 

nor in the currently added PIPs; 

2 there should not be any “pip TA->Y ,” in the primary PIPs.  
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The first rule is necessary to avoid the cases that multiple wire 

segments drive a unique segment, and the second rule prevents 

adding extra load to the nets of the original design to avoid 

performance overheads. 

 

F. Discussion: Possible Attacks and Configuration Encryption 

Although brute-forcing the device logic to discriminate the 

dummies based on monitoring the design’s functionality is 

theoretically possible, due to large number of resources inside 

a FPGA, it is extremely difficult to change the logic 

configuration one by one and give an essentially complete test 

pattern to verify the correct functionality of the design, 

particularly for complex and sequential circuits. Another way 

is to arbitrary place a HTH (without finding dummy logic), 

which requires no overlapping between resources of the 

original and HTH circuits. This is also infeasible, because for 

example if we consider half of the device resources to be 

empty and the HTH is composed of only 50 LUTs (which is 

less than 5% of total LUTs in smallest devices), the probability 

of having no overlap is approximately). Furthermore, since we 

have not left any room for adding new PIPs, the attacker 

cannot introduce new interconnect between the hypothetical 

HTH resources. A full reverse engineering, which requires the 

complete database between bitstream bits and corresponding 

resources can make it possible to generate the modified design 

XDL, but yet not the original design. Moreover, the available 

tools [12], [5], [4] have very limited resource database and 

only are available to extract a few set of PIPs as a plain text, so 

they are entirely unable to reconstruct the interconnect which 

comprises most of the configuration bits. Note it is also 

possible to distinguish a chunk of dummy LUTs by accurately 

monitoring the signal activities, if a considerable portion of the 

original device is unutilized. This issue can be resolved by 

choosing a near-to-minimum size device or evenly distributing 

the original design logic within the FPGA using simple 

synthesis constraints. 

 

 
Fig. 3. Functional verification. 

 

 
 

Listing 4. Stimuli module for functional verification. 

 

Another argument regarding the proposed scheme is that 

configuration encryption is sufficient to ensure the device 

security. We should note that not all of device families support 

bitstream encryption; even if they do, there are several 

successful works, usually based on power analysis attacks that 

break bitstream encryption [11]. Therefore, our scheme can be 

used on top of other protection mechanisms as configuration 

encryption. The proposed scheme protects the design against 

insertion of malicious objects in free resources of the device 

and is irrelevant to the modification made on the base design 

 

III. EXPERIMENTAL SETUP AND RESULTS 

 

Here, we will first verify the functionality of a design after 

applying the proposed HTH protection scheme. Then, the 

original and modified designs will be compared in terms of 

performance and power consumption. Finally, the resource  

utilization of the original and modified designs will be 

discussed. In these experiments, Xilinx ISE Design Suite 10.1 

is used to implement a set of IWLS benchmark circuits on the 

Xilinx Virtex-II device. Then, performance reports are 

extracted by post placement and routing simulations in Xilinx 

Timing Analyzer [19]. In addition, power reports are extracted 

by Xilinx XPower tool [22]. Utilization reports are also 

adopted from Xilinx ISE utilization reports. 

 

A. Functional Verification 

In order to perform functional verification, post placement and 

routing simulation models are generated for both original and 

protected designs using Xilinx netgen command. This 

command produces a Verilog file along with the corresponding 

standard delay format (SDF) file from the post placement and 

routing NCD file. Then, as it is shown in Listing 4, the top 

modules of both the original and protected designs are 

instantiated and wrapped up in an another Verilog module 

named stimuli. The instances of the original and protected 

designs share the same inputs. In order to verify the 

functionality of the protected design against the original 

design, the equivalent outputs are first XORed. Then, the 

output of all XOR gates are ORed to examine the exact match 

between the outputs of both designs. Note that the generated 

HDL files contain Xilinx primitives as LUT modules and 

BRAMs. To this end, the SIMPRIM library [16] is added to the 

Mentor Modelsim [10] simulator. As it is shown in Fig. 2, 

simulation results reveal that the output of two designs are 

exactly identical. This proves that the proposed protection 

scheme does not disturb the functionality of the original 

design. To ensure whether all added instances exist in the final 

bitstream, we convert back the post placement and routing 

NCD to XDL file to remove possible dangling instances. The 

results show that dummy logic still exists in the XDL file, 

which proves that they have been added to the design 

appropriately. 

 

Table I Power and Performance of Protected Versus 

Unprotected Designs 

 

 
 

B. Performance 

Critical path delay of both original and protected designs are 

obtained from the Xilinx Timing Analyzer reports. This tool 
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gets an NCD file and analyzes the timing constraints of the 

design. As shown in Table I, the pad-to-pad critical path delay 

of both designs are the same. Hence, our scheme does not 

impose any performance overhead to the original design. This 

is one of the main advantage of the proposed LLDL scheme as 

compared to the HLDL schemes which can negatively affect 

the performance of the original design. 

 

C. Power Consumption 

To measure the power consumption of the mapped designs, 

Xilinx XPower Analyzer is used. This tool gets the NCD file 

beside an optional activity file (VCD or SAIF) to estimate the 

power consumption. The activity file is produced by ModelSim 

simulations described earlier in Section III-A. Table I 

illustrates the power consumption of the original (unprotected) 

and protected designs. As it is shown, although the protected 

design utilizes more resources than the original design, it 

consumes almost the same power as the original design. This is 

due to the fact that static power of a FPGA is constant, 

regardless of the implemented design. That is whether a 

resource is utilized or not, it consumes almost the same static 

power in the FPGA. In addition, the dummy resources in the 

protected design are not triggered by any input, i.e., although 

their input nets are configured, we choose to not drive them 

with any active signal (by the second criteria in Section II-B) 

to cause any switching. Therefore, a protected design does not 

consume further dynamic power as compared to the original 

design. 

 

Table Ii Plp and Pip Utilization: Protected Versus Unprotected 

Designs 

 

 
 

 
Fig. 3. Protected versus unprotected design. (a) Unprotected 

usb_phy. (b) Protected usb_phy. 

D. Resource Utilization 

Unused resources are potential candidates to be used by low-

level HTHs. Therefore, resource utilization of a design in 

FPGAs can be used as a measure of susceptibility to the HTH 

insertion. High resource utilization reduces the chance of a 

HTH insertion. In the experiments, the resource utilization is 

measured before and after applying the protection scheme. The 

proposed protection scheme instantiates all unused PLPs in the 

target FPGA. However, as mentioned before in Section II, it 

cannot utilize all of the available PIPs. To evaluate the 

resource utilization, a set of IWLS benchmark circuits is 

implemented on a minimum sized FPGA. As shown in Table 

II, on average, the number of PIPs is increased by 15X in the 

protected design as compared to the original unprotected one. 

In addition, the PLP utilization is increased to 100% for all of 

protected designs. As a result, the resource utilization is 

significantly increased after applying the proposed protection 

scheme as compared to the original design. Note that the 

provided numbers for unprotected PLPs account only for the 

LUTs, i.e., several other primitives such as multipliers and 

BRAMs are entirely unused and significantly reduce the 

overall PLP utilization. Fig. 3 illustrates the resource utilization 

of a sample unprotected circuit (usb_phy) from IWLS circuits 

vs. the same circuit after being protected by applying the 

proposed LLDL scheme. Note that the high resource utilization 

is achieved in the proposed scheme while no power and 

performance penalties are imposed to the system 

 

IV. CONCLUSION  

 

In this letter, we proposed a low-level protection scheme 

against HTH insertion in the bitstream of FPGAs. This scheme 

is based on utilizing unused resources of an FPGA. Functional 

verification has been performed in order to assure the 

correctness of the functionality of the circuit after applying the 

protection scheme. Experimental results show that the 

proposed scheme increases the utilization of FPGAs up to 15X 

without having any impact on power or performance. 
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