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Abstract : Gas-liquid transfer operations are of considerable interest to the process industries. If the gas is 

brought into contact with the liquid in the form of bubbles, a better mass transfer is ensured. Usually, their size 

varies widely, from a few micrometers to a few millimetres. In this work, the influence of the initial bubble 

diameter, the liquid head and surface tension on the rise time calculations was exemplified for an air bubble in 

water, using the bubble expansion factor. Further, it was shown that smaller air bubbles are highly influenced by 

the surface tension. In contrast, for air bubbles in liquid head, if the initial size is larger than 0.1 mm the 

information needed for the rise time calculation is the liquid head only. 

Keywords - initial bubble diameter, liquid head, rise time, single bubble, surface tension 

I. INTRODUCTION  

Gas-liquid transfer operations are quite common in the process industries. For a better mass transfer, the gas is 

brought into contact with the liquid in the form of bubbles. The usual bubble size varies from few micrometers to few 

millimetres. The most commonly used gas-liquid contactors are bubble column reactors, mineral processing devices, foaming 

devices and fermenters. In these contactors, two phases are brought into intimate contact in the form of bubbles. The 

interfacial surface of the bubble, the nature and degree of dispersion of the one fluid in the other influences the rate of mass 

transfer. In these contactors, bubbles swarms rather than a single bubble, but the understanding of the single bubble 

hydrodynamics provides an important insight and often serves as a useful starting point to undertake the modelling 

applications, involving bubble swarms [1]. For a given type of gas-liquid contactor, the knowledge of free rise bubble velocity 

provides the estimation of the mean residence time of the gas phase. Once the desired mean residence time is known, the 

sizing of the gas-liquid equipment can be done. This gives the motivation to study the rise time calculations for bubbles and 

parameters that affect the bubble’s hydrodynamics. Because of this, an intensive research has been done [1]. In the past, 

several efforts have been made to identify the behaviour of the single gas bubble [2-17]. Previous investigations were mainly 

focused on the bubble terminal velocity in a steady motion, and the details are summarised in Table 1.  

.  

Table 1. Summary of single air bubbles behaviour obtained from the literature
 
[7, 12, 16, 18] 

Sl.

No 

Region 

(equivalent diameter, d) 

Behaviour of the bubble  Assumptions Terminal velocity 

expression 

1. Region1 

(d < 0.7 mm) 

like an expanding sphere 

without internal 

circulations 

No slip condition on 

the tangential 

velocity[16] 

 
18μ

ρρgd gL

2

p 
 

2. Region 2 

(0.7 mm< d <1.4 mm) 

like an expanding sphere 

with internal circulations 

No shear stress 

transmitted across 

the interface [18]  

 
12μ

ρρgd gL

2

p 
 

3.  
Region 3 

(1.4 mm < d < 6 mm) 

 

No longer like a spherical 
and tend to follow a 

zigzag or helical path 

oscillatory 

Based on Wave Theory [7]  

2

dg

ρd

gσ2 p

Lp

c   

Based on Isaac H. Lehrer rational arguments [12] 

L

p

Lp

c

2ρ

dgΔρ

ρd

gσ3
   

4. Region 4 

(d > 6 mm) 
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In this article, calculations for the estimation of the bubble rise time under the influence of gravity in a low viscosity fluid are 

presented. The bubble expansion factor [18] has been used for analysing the influence of the initial bubble diameter, the liquid 

head and the surface tension. The introduction of the paper should explain the nature of the problem, previous work, purpose, 

and the contribution of the paper. The contents of each section may be provided to understand easily about the paper. 

II. THEORY  

Let us consider a single gas bubble with initial diameter ( ), released in a pool of liquid (density,  ) under atmospheric 

pressure  , at a depth  . As the bubble is released, it will start moving upwards freely and undergoes expansion as it rises to the 

surface (Fig. 1). This is due to the reduction in the hydrostatic pressure to which it is subjected. The bubble behaviour depends 

on various parameters such as initial diameter, liquid head and surface tension.  

 

 
Fig.1. A bubble in a pool of liquid. 

 

III. ANALYSIS  

Case I. Influence of the Surface tension. Assuming that the air bubble is not dissolving in the water as it rises 

upwards in the liquid, and has only one surface and the liquid temperature is constant, the following analysis was made. Let 

the air bubble equivalent diameter (since it may not be spherical) increases from   to   (where) as it reaches to the top of the 

liquid column. For isothermal system, according to ideal gas law  

PV = constant.                            (1)  

Considering the initial size of the air bubble is pod  at a depth oZ , the pressure in the air bubble at initial state is  






pressuretensionsurface
pressureofExcess

po

pressure
headliquid

o

pressure
cAtmospheri

A d
σZgLP 4 

       (2) 

and the Pressure in the air bubble at final state (i.e., at the surface of the pool) is 

po
A d

P


4                                                                    (3) 

where  

Initial volume = 6

3
poπd

, 

Final volume = 6

33
podπλ

. 

According to the Eq. (1) it follows that 

333
6

4
6

4
po

po
Apo

po
OLA dλπ

λd
σPdπ

d
σgZρP 

















  and respectively  

poL

poA
o

gdρ

]σ[λ][λdP
Z

141 23 


,                                                                         (4) 

where  
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Initial terminal velocity (i.e. based on initial size) = 
μ

Δρgd po

18

2

 
s

m , 

Final terminal velocity (i.e. based on final size) = 
μ

Δρdgλ po

18

22

s
m , 

Average velocity (terminal) = 












 

2

1

18

22
λ

μ

Δρgd po

s
m .                                       (5) 

Thus, for the rise time, tI, the following equation was obtained: 

2

1

18

22
][λ

μ

Δρdg

Z
t

po
I



  s.                                                                                  (6) 

Let us assume the following possibilities: 

a) The surface tension is negligible   

If the surface tension is negligible, Eq. (4) is reduced to 

][λ
gρ

P
Z

L

A
o 13                                                                                               (7) 

and
A

oL

P

Zgρ
λ 13

,

3
1

1 














A

oL 

P

g Zρ
λ .                                                                                  (8) 

b) With surface tension  

In this case Eq. (4) is rewritten as  

    0
4

1
4 23 














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poAA

oL

poA dP

σ

P

Zgρ
λ

dP

σ
λ  .                                                                                                          (9) 

Eq. (9) is a cubic equation and has only one real root. More details about solution method are available elsewhere
 
[19].  

      023  BAλAλ  ,                                                                                                                                        (10) 

Where 
poAdP

σ
A

4
 , 

A

oL

P

Zgρ
B 1 , 

3A/δλ  ,                                                                                                                 (11) 

03  qpδδ ,                                                                                                            (12) 

A)(p 
3

1
 & )AB)(A(q 3227

27

1
 ,                                                               (13) 

23
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


















qp
r  .                                                                                                           (14) 

Therefore, r always > 0, hence, the cubic equation has only one real root: 

3
1

3
1

22

















 r

q
r

q
δ  .                                                                        (15) 

Combining Eq. (11) and Eq. (15) we get analytical solution for λ (bubble expansion factor). Using MATLAB® Eq. (8) and 

Eq. (9) have been solved to obtain Fig. 2 and Fig. 3. These figures show the influence of the initial air bubble diameter, the 

liquid head, and the surface tension on the bubble expansion. Fig. 2 shows the influence of the surface tension and the liquid 

head on the bubble expansion for 1 μm air bubble. When surface tension affects are taken into consideration, the expansion of 

1 μm bubble is found to be about 10% in 10 m liquid head, whereas for the same liquid head with negligible surface tension, 

the bubble expansion is about 25%. From Fig. 3 it is clear that when initial air bubble size is 0.1 mm, the expansion of the 

bubble is about 25% for both cases with and without surface tension. Therefore, we can say that the smaller air bubbles are 

highly influenced by surface tension. For bubbles larger than 0.1 mm, the expansion is observed to be about 25% in 10 m 
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liquid head and it is independent from the initial size and depends only on the liquid head. From Fig. 3, it is also clear that the 

influence of the surface tension on the bubble expansion is insignificant. Therefore, for air bubbles in liquid head, if the initial 

size is larger than 0.1 mm the information needed for the calculation rise time is the liquid head only. Therefore, in the 

following sections (under Case II & Case III) for the case of 0.5 mm bubbles liquid head information alone is considered to 

calculate the bubble rise time.  
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Fig. 2. The air bubble expansion vs. the water liquid head for 1 µm air bubble with and without surface tension. 
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Fig. 3. The air bubble expansion vs. the water liquid head for 0.1 mm air bubble with and without surface tension. 

 

Illustration: Rise time calculations for 510
-4

 m bubble in a 10 m water column. According to the information in Table 1, if 

the air bubble initial diameter (i.e., equivalent diameter, d ) is less than 0.7 mm, bubble assumes terminal velocity and it is 

given by Stoke’s law [16]. It is known that the surface tension of the water is m
N072.0 ; the atmospheric pressure 

2m
KN325.101AP ; 2

81.9
s

m
g 

; and Lρ  of the water at 25C = 1000 3m
kg

. It was calculated that   is 1.25, using 

Eq. (4). In this case percentage rise in the bubble size = 25.24%. 

Density of the air at 25C is 

2988314

2910325101 3






.

RT
MPA

air
  3m

kg
= 1.186 3m

kg
, 

and rise time, 













 










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1(1.25238)
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2

3

24I
t

s  = 57.28 s. 
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 Case II. Considering negligible Surface tension. In the case when the surface tension is neglected, it can be calculated 

according to Eq. (2). Let the final size be fd  and then the pressure inside the bubble is 

f
A d

P 4σ , [ ZgρL  = 0].                                                                                      (16) 

Since the mass of the bubble is constant, it follows that 




















f
A

f

po
LA
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d

σP
πd

d
σgZρP

πd 4
6

4
6

3

0

3

.                                           (17) 

Eq. (17) manipulated as follows 







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
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d
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6

4
6

3

0

3

.                                 (18)  

In Eq. (18) and 
pod

σ4 ×
f

po
d

d
is negligible. 

For low Reynolds number Drag is given by vd3 . Since the surface tension is neglected, Eq.(18) reduced as follows: 

 
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









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dd

LA
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pop  .                                                                          (19) 

When the single bubble equivalent diameter is less than 0.7 mm it will be in spherical shape
 
and behaves like a rigid sphere 

[16, 18]. Therefore, the drag force for rigid sphere is vμdπ3 p . For the force balance the following equation is valid: 

vμdπ
gρπd

p
Lp

3
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forceDragforceBuoyancy0

3
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; 

μ

gρd
v Lp
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  . 

The substitution of pd in terms of pod , here pd  is the diameter at any instant (t)d p and v  is the velocity at any 

instant )(tv  

implies 
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Lpo
LA 3

2
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2

3
2
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Integrating between limits of Z (Zo to 0) and t (0 to II
t ) 
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The rise time, 
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 Substituting all parameters in Eq. (24) we get rise time calculations for 510
-4

 m bubble in a 10 m water 

column, 54.06
II

t  s. 
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 Case III. Considering just the liquid head information. The following manipulation has been suggested for the rise 

time calculations, where the gas phase properties are considered at average liquid head pressure. For rigid sphere [18] the 

terminal velocity is given by Stoke’s law and is as follows: 

 

L

p
t

μ

Δρgd
v

18
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Applying conservation of the mass on the air bubble gives  
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volumeAverage
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volumeInitial

po ρd
π

ρd
π
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After rearrangement the Eq.(26) transforms in 
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This implies     3
1

3
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g,avegopog,avep,ave ρρdρd  ,                                                 (28) 

where goρ is the initial density of the air bubble, aveg,ρ is the average density of the air bubble, pod is the initial diameter of 

the air bubble, and avep,d  is the average diameter of the bubble. 

Therefore, 
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Consequently, the rise time,
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Substituting all parameters in Eq. (31) we get rise time calculations for 510
-4

 m bubble in a 10 m water column. 

The initial pressure on the bubble is computed as follows  


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The average pressure of the liquid column is computed as follows 
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Air bubble density at initial conditions and 25
o
C = 

325101
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273

41422
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.

.

.
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kg
. 

Air bubble density at average pressure and 25
o
C = 
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.

.

.
  = 1.76 3m

kg
. 

 Therefore, the rise time is calculated as, 
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      1
1.76

10001.762.33100.59.81

10100.893718

3
1

3
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3










III
t  = 54.5 s. 

All the three cases discussed in this study resulted in almost equal rise time for 0.5 mm air bubble. However, case two and 

three are very close. This is due the fact that integration is nothing but differential summation. However, it is very easy to use 

average properties while calculating rather than using integration.  

 

IV. CONCLUSION 

The influence of the initial bubble size, the liquid head and the surface tension on the bubble expansion has been 

presented analytically. The MATLAB code that has been given can be used to demonstrate the influence of these parameters. 

All the three cases discussed in this study resulted in approximately equal rise time for an air bubble. Although, the rise time 

calculations are exemplified with 0.5 mm air bubble, a similar approach can be used for bubbles with other size. It is important 

to note that these time calculations are appropriate for non-dissolving bubbles. 
NOTATION 

A–Dimensionless parameter (
poAdP

σA 4 ); 

B–Dimensionless parameter (
A

oL
P

Zgρ
B 1 ); 

d–Equivalent diameter of the gas bubble, m; 

g–Acceleration due to gravity, m/s
2
; 

M-Molecular weight of air; 

P–Pressure, N/m
2
; 

p–Number in terms of A ( A)(p 
3

1
); 

q–Number in terms of A&B ( )AB)(A(q 3227
27

1
 ); 

R–Universal gas constant; 

r–Number in terms of p & q (

23

23



















qp
r ); 

t–Time, s; 

V–Volume (for sphere 3

6
d

π
), m

3
; 

v–Velocity, m/s; 

Z–Distance, m; 

μ–Viscosity, kg/ms; 

σ-Surface tension, N/m;  

ρ–Density, kg/m
3
; 

λ–Constant (greater than 1); 

Δ–Difference.  

 

SUBSCRIPTS 

A–Atmospheric;  

air–Air; 

ave–Average liquid head conditions; 

f–Final state; 

g–Gas; 

L–Liquid; 

po–Initial condition (t = 0); 

p–Instant equivalent diameter of the bubble (t > 0); 

t–Terminal; 

I–Case I; 
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II–Case II; 

III–Case III. 

APPENDIX 

1. Matlab m-files for bubble expansion vs. liquid head  

% Program to calculate air bubble expansion in water column 

% Air bubble expansion with negligible “σ” 

% Air bubble expansion with “σ” 

clear all ; 

% data 

T  = 0.072 ; % surface tension N/m 

mu = 0.8937*10^-3 ; % viscosity Kg/m s 

ro = 1000 ; % density Kg/m^3 

pa = 1.01325*10^5 ; % atmospheric pressure N/m^2 

g  = 9.81 ; % acceleration due to gravity m/s^2 

count = 1 ; 

z=[1;1.5;2;2.5;3;3.5;4;4.5;5;5.5;6;6.5;7;7.5;8;8.5;9;9.5;10];% head m 

d0 = 1*10^-6; % initial size m  

%d0 = 1*10^-4; % note for initial size 0.1 mm  

for j=1:1:length(z) 

    H=z(j) 

    alpha=(1+ro*g*H/pa)^(1/3) 

    ps = ro*g*H ; % hydrostatic column pressure 

    a = 1 + (pa/ps); 

    b = (4*T)/(ps*d0) ; 

    %###################################################################### 

    p = (-1/3)*(b/(a-1))^2 ; 

    q = -1*(a+b)/(a-1) + (2/27)*(b/(a-1))^3 ; 

    r = (p/3)^3 + (q/2)^2 

    a1 = ((-q/2) + sqrt(r))^(1/3) ; b1 = ((-q/2) - sqrt(r))^(1/3) ; 

    alphaNN = a1+b1 - (1/3)*(b/(a-1)) 

%##################################################################### 

    alphaN(count)=alpha % Air bubble expansion with negligible “σ” 

    alphaNNN(count)=alphaNN % Air bubble expansion with “σ” 

    count = count + 1 ; 

end ;  

plot(z,alphaN,'o') 

hold on 

plot(z,alphaNNN,'+') 

xlable(' Liquid head in m') 

ylable('Air bubble expansion') 
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