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Abstract— This paper presents an implementation of one dimensional 

Burgers equation using implicit method with Intel Xeon Phi 

Coprocessor. In particular, we used MAGMA MIC library which is 

an open source high performance library for solving a systems of 

non-linear equations. Further for high performance computation we 

consider offload mode as the primary mode of operation for Intel 

Xeon phi coprocessor. The result obtained from implicit scheme is 

then compared with the exact values and it’s seen that the results 

obtained are approximate and reliable. The result table showed that 

the proposed scheme achieved higher performance on Intel MIC 

platform. 
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I.  INTRODUCTION 

 
The Burgers equations have the wide range of applicability in 
industrial and non-industrial applications. It is widely used in a 
field of computational fluid dynamics (CFD) for studying the 
aerodynamics of aircraft and vehicle, hydrodynamics of ships, 
chemical engineering process, biomedical and marine 
engineering problems. It is found that Burgers equation is used 
to describe various kinds of problem model such as 
mathematical model of turbulence and the approximate theory 
of flow through a shock wave travelling in a viscous fluid [1]. 
The one dimensional viscous Burgers equation consists of a 
set of partial differential equations involving convection and 
diffusion part. For solving the Burgers equations for large 
range and smaller spatial and time steps, it requires large 
computational power and capacity. For solving such a 
complex problem rapidly and economically we are using Intel 
Xeon Phi coprocessor. The one dimensional viscous Burgers 
equation can be solved using different schemes like finite 
difference method (FDM), finite element method (FEM), finite 
volume method (FVM) or boundary element method (BEM).  
 
The related study work is shown in Section 2. With the 
discretization of the Burgers equation it leads to the system of 
non-linear equations. Solving these non-linear equations is 
fundamental to scientific computing. For this the popular 
LAPACK library [2], Intel's MKL [3] and AMD's ACML [4] 
have been the software of choice to provide the sparse matrix 
solver. In this paper we have presented our approach in 
solving Burgers equation using MAGMA MIC library [5]. The 
MAGMA MIC library offers the hybridization methodology 
that deal with the extreme level of parallelism and 
heterogeneity. In hybridization methodology we will split our 
algorithm of interest into chunks of code and only offload the 
chunk of code that requires high computation to Intel Xeon 
Phi coprocessor. The architecture of the Intel Xeon phi 
coprocessors leads to accelerate the application process. 
However Intel Xeon Phi coprocessor-based clusters present 

certain challenges to achieving good communication 
performance [6]. 
 

II. RELATED WORK 

 
In CFD domain the Burgers equation serves as basis for 

studying and describing the shock in the fluid. For 

approximating the one dimensional viscous Burgers equation 

there has been different numerical approaches. For solving 

these partial differential equations right selection method leads 

to greater convergent solution so proper numerical scheme 

must be chosen based on their applicability. Prior [7], Kutluay 

et al. have presented explicit and exact-explicit finite difference 

methods for solving these equations. They have discretized the 

diffusion equation arisen from Hopf-Cole transformation and 

gave an explicit expression for the exact solution of it. But they 

used severe stability condition which requires small size of 

time steps. In [8] author applied the Crank-Nicolson method to 

the linearized equation to obtain unconditionally stable implicit 

scheme for solving Burgers equation. To this scheme, they do 

not require any restriction over mesh sizes but the solution 

obtained from this scheme is not precise. The linear finite 

difference scheme for the initial-boundary problem of Rosenau-

Burgers equation was proposed in [9]. It is flexible and 

efficient to apply finite difference method (FDM) to a variety 

of transient problems with fixed and free boundary domains 

[10, 11]. Its simplicity alone cannot provide the sufficient 

convergence rate. Using FDM we cannot easily include the 

topological nature of the problems and also it cannot handle 

higher dimensional geometric objects. In [12], K. Pandey et al. 

applied the Douglas finite difference to the linearized equation 

to obtain unconditionally stable fourth-order accuracy in space 

and second-order accuracy in time implicit scheme for solving 

Burgers equation. But this paper only gets fourth-order 

accuracy numerically for the diffusion equation. Authors in 

[13] presents the various solution methods like Fourier method, 

Chebyshev-Tau method, Crank-Nicolson (ABCN), ABCN 

collocation method and finite difference (FD) solution using a 

second-order approximation and a stretching transformation. 

But all this method is used to solve the Burgers equation with 

small viscosity parameter and it also leads to the geometric 

inflexibility of the problem. The other methods like exponential 

finite difference method have been used by Bhattacharya [14] 

and Handschuh and Keith [15].  
 
In this paper we have used a new scheme where we first 
smooth the equation using LU decomposition and later 
applying the implicit exponential finite difference method and 
fully implicit exponential finite difference method [16]. For 
solving the sets of non-linear equations on Intel Xeon Phi 
coprocessor we are using MAGMA MIC library. As a solution 
to the high performance computing (HPC) we are using Intel 
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Xeon Phi coprocessor. The reason behind selecting this 
accelerator is its simplicity and reliability. It may be consider 
as an alternative to NVIDIA’s GPU cards that require 
understanding of CUDA programming [17] or AMD’s GPU 
cards that are programmed with OpenCL [18] and uses 
AMD’s GPU libraries. 
 

III. FORMULATION 

A. Burger’s Equation 
The one dimensional viscous Burgers equation was first 
treated by Johannes Martinus Burgers in 1895-1981 as a 
mathematical model for turbulence and after whom such an 
equation is widely referred to as Burgers equation. It is used to 
model gas dynamics and traffic flow problem. The Burgers 
equations consist of non-linear convection term, a diffusion 
term and a time dependent term. Therefore it can be treated as 
a qualitatively correct approximation of the Navier-Stokes 
equations. That means it can be considered as a good model 
for the numerical solution of the complicated Navier-Stokes 
equations. Among the few non-linear partial differential 
equations Burgers equation can be solved exactly for an 
arbitrary initial condition using boundary value and condition.  

 The following is the one dimensional viscous Burgers 
equation: 

+  = v

 

 

With the initial condition: 

                              

And the boundary condition: 

  

 

In the above partial differential Burgers equation, the equation 

∂u/∂t is the time dependent equation. And the equation u.∂u/∂t 

and v(∂^2 u)/(∂t^2 ) are the non-linear convection and 

diffusion term. The two independent variables t and x stands 

for time and space coordinates. x is divided into the equal sub-

intervals which is given by xi = ih where h = Δx = (xmax–

xmin)/M, the spatial mesh size and i=0,1,..,M. Similarly, time t 

is equally divided into n intervals, i.e. tn = nk where k = Δt = 

(tmax-tmin)/N is the time step and n=0,1,..,N. For the present 

case xmin= 0, xmax= 2, ∂x=Δx, and ∂t=Δt. The dependent 

variables u is the velocity term and v stands for the viscosity 

term. If we drop the viscosity term from the above equation, 

i.e. v=0, then it will be a non-viscous Burgers equation. 

B. Implicit Method 

It is observed from [16] that applying the implicit exponential 

finite difference method (FDM) and fully implicit exponential 

finite difference method on Burgers equation produces a good 

convergent solution. Our current scheme is based on this 

method where the high-frequency residuals error are eliminated 

by the LU solver. The remaining residuals components are then 

projected to implicit and fully implicit FDM. Now for solving 

the non-linear system of equations using LU method on Intel 

MIC we first discretized the Burgers equation (1) using the 

following finite difference schemes: 

Backward difference method in space direction for 1
st
 order 

derivative, 

                                                  (4) 

Backward difference method in space direction for n+1 time 

instance 

                                              (5) 

Central difference method in space direction for 2
nd

 order 

derivative: 

                                   (6) 

Here we arrange the equations (4), (5) and (6) in equation (3). 

We obtain the coefficient matrix A, x is a vector of unknown 

variables and B is also a vector containing constant term. Here 

we solve Ax = B using MAGMA MIC library routine 

magma_dgesv_mic() that computes an LU factorization of a 

general M × N matrix A.                                                          

After smoothing the equation we apply the implicit exponential 

finite element difference method (I-EFDM): 

                   (7) 

And Fully Implicit exponential finite element difference 

method (FI-EFDM): 

               (8) 

where,  

               

          

               

           

 which is valid for values of i lying in the interval  1 ≤ i ≤ N-1. 

The numerical solution obtained from this two method yields a 

faster and precise result as compared with the traditional 

explicit method. 
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C. Algorithm for solving Burgers equation on Intel Xeon Phi 

The uses of accelerator device for solving the CFD problem 

are currently in widespread use. The algorithm introduces two 

variables nx and nt that are the number of space and time 

instances which we set at line 2 and line 3. The function 

magma_dsetmatrix () copies the coefficient matrix h_A and 

constant matrix h_B to Intel Xeon Phi coprocessor at line 6 

and line 7.  The control is passed to Xeon Phi where it is 

performing LU decomposition using magma_dgesv_mic() 

operation. The result from Xeon Phi is copied back to host at 

line 9 using magma_dgetmatrix() where we further refine and 

solve  using I-EFDM or FI-EFDM method. The Burgers 

equations are a complex set of partial differential equation that 

requires high computational power for obtaining solution and 

hence we are using accelerator device like Intel Xeon Phi. 

Other researchers have also focused on optimizing 

applications on Intel Xeon Phi coprocessor-based clusters 

[19]. 

IV. RESULT 

 
This section presents the results obtained by our scheme on 

Xeon Phi coprocessor using MAGMA MIC library routine and 
implicit method.  
A. Experimental Environment 

Our experiment was performed on Intel Xeon Phi 
processor which is our host system and Intel Xeon Phi 
coprocessor which is our device. The host part consists of dual 
socket, 8 core Intel Xeon E5 processor with 2.6GHz frequency 
rate. It has 20 MB shared L3 cache in each socket and each 
core has 256 KB L2 and 32 KB LI and LD cache. The system 
is equipped with Intel Xeon Phi coprocessor via PCI Express 
card. It comprise of 60 Intel Architecture (IA) cores, each with 
four way HyperThreading, to produce the total of over 240 
logical cores. Additionally, Xeon Phi has 8 GB GDDR5 RAM 
for faster data access, it runs at 1.05 GHz with each core 
having 512 KB L3 cache. 

 
B. Experimental Result 

In order to study and assess the performance of the implicit 
scheme in our algorithm we have compared the numerical 

result with that of analytical result. The test problem in our case 
is Problem 3 from [16]. The problem is solved for a range 2 i.e. 
a=0 and b=2.  The given domain is equally discretized into 20 
steps with h=0.1. And time step is discretized into 10 time 
instance with time value being 1 and k=0.1. Next the problem 
is solved for the given geometry with initial and boundary 
conditions given: 

The initial condition of the problem is: 
   

                  (9) 
Where, a < x < b 

And boundary condition 

  
With the analytical solution 

(10)      
                                            

The result for the above problem are displayed in Table-I 
and in Fig.1 here for each spatial coordinates x, numerical 
result ui and analytical result uai is calculated for values of i 
lying in the interval 0 ≤ i ≤ M. 

 
 As shown from the figure we have illustrated the solution 

for the problem for a particular time instance t, v=1, h =0.1, k = 
0.1 and 0 ≤ x ≤ 2. The obtained numerical result is then 
compared with the analytical solution in the Table-I. It shows 
that the numerical solution obtained is precise to that of the 
analytical solution with our given approach. 

 
 

V. CONCLUSION  

 
In this paper we have shown how to solve Burgers equation 

using new hardware platform i.e, Intel Xeon Phi coprocessor. 

The challenge of porting the code effort stemmed from the fact 

that the new coprocessor from Intel and the integration of 

MAGMA MIC library that were markedly different. Further the 

solution of Burgers equation using MAGMA port to Xeon Phi 

can be considered as a good model for the numerical solution 

of the complicated Navier-Stokes equations. It will help to 

solve 3D Navier-Stokes problem where a non-linear terms 

grows in the equation. The ultimate goal of our research is that 

it will help to tremendously reduce the execution time using 

high-performance. 
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1: Initialization 

2:  nt ← number of time instance 

3:  nx← number of space instance 

4:  for i = 0: nt do 

5:    for i = 0: nx do 

6.:      magma_dsetmatrix(N,N,h_A,0,lda,d_A,0,           

ldda, queue)  

7:       magma_dsetmatrix(N, nrhs, h_B, 0, lda, d_B, 

0, ldda, queue)    

8:       magma_dgesv_mic(N, nrhs, d_A, 0, ldda, piv, 

d_B, 0, ldda, &info, queue) 

9:       magma_dgetmatrix(N, nrhs, d_B, 0, ldda, h_X, 

0 ,lda,queue) 

10:   Solve  using I-EFDM or FI-EFDM 

11:   end for 

12:  end for 
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TABLE I.  COMPARISON OF THE NUMERICAL SOLUTION WITH THE 

ANALYTICAL SOLUTION FOR V= 1, H = 0.1, K= 0.1 AT SPECIFIC TIME INSTANCE 
TABLE II.   

At time instance t = 0 

Number of spatial 

steps 

Numerical 

solution(ui) 

Analytical 

solution(uai) 

0.0 0.000000 0.000000 

0.1 0.035925 0.035911 

0.2 0.071342 0.072298 

0.3 0.105699 0.106059 

0.4 0.138404 0.139540 

0.5 0.168818 0.168517 

0.6 0.196265 0.19725 

0.7 0.220039 0.220129 

0.8 0.239414 0.238504 

0.9 0.253671 0.253801 

1.0 0.262129 0.262125 

1.1 0.264183 0.260603 

1.2 0.259365 0.260301 

1.3 0.247399 0.247401 

1.4 0.228262 0.228280 

1.5 0.202236 0.202208 

1.6 0.169935 0.169938 

1.7 0.132289 0.132301 

1.8 0.090497 0.090503 

1.9 0.045927 0.045912 

2.0 0.000000 0.000000 
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