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Abstract - The unifying purpose of this paper to introduces 

basic ideas and methods of dynamic programming. It sets out 

the basic elements of a recursive optimization problem, 

describes Bellman's Principle of Optimality, the Bellman 

equation, and presents three methods for solving the Bellman 

equation with example. 
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I. PRELIMINARIES - DYNAMIC PROGRAMMING 

 

Dynamic programming is a mathematical optimization method. 

It refers to simplifying a complicated problem by breaking it 

down into simpler subproblems in a recursive manner. While 

some decision problems cannot be taken apart this way, 

decisions that span several points in time do often break apart 

recursively; Bellman called this the "Principle of Optimality". 

If subproblems can be nested recursively inside larger 

problems, so that dynamic programming methods are 

applicable, then there is a relation between the value of the 

larger problem and the values of the subproblems. In the 

optimization literature this relationship is called the Bellman 

equation. 

 

II. THE BELLMAN EQUATION AND RELATED 

THEOREMS 

 

A derivation of the Bellman equation 

Let us consider the case of an agent that has to decide on the 

path of a set of control variables,  
0t t

y



 in order to maximize 

the discounted sum of its future payoffs,  ,
t t

u y x  where xt is 

state variables assumed to evolve accordingto 

 1 0
, ,

t t t
x h x y x


 given.We may assume that 

the model is markovian, a mathematical framework for 

modeling decision making in situations where outcomes are 

partly random and partly under the control of a decision maker. 

The optimal value our agent can derive from this maximization 

process isgiven by the value function 
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where D is the set of all feasible decisions for the variables of 

choice. Notethat the value function is a function of the state 

variable only, as since themodel is markovian, only the past is 

necessary to take decisions, such that allthe path can be 

predicted once the state variable is observed. Therefore, 

thevalue in tis only a function of xt(1) may now be rewritten as 
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(2) 

making the change of variable k = s - 1, (2) rewrites 
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Note that, by definition, we have 
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Such that (3) rewrites as 
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This is the socalledBellman equation that lies at the core of the 

dynamicprogramming theory. With this equation are 

associated, in each and everyperiodt, a set of optimal policy 

functions for y and x, which are defined by  
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Our problem is now to solve (4) for the function ( )
t

V x . This 

problem isparticularly complicated as we are not solving for 

just a point that wouldsatisfy the equation, but we are 

interested in finding a function that satisfiesthe equation. A 

simple procedure to find a solution would be the following 

1. Make an initial guess on the form of the value function 

0
( )

t
V x  

2. Update the guess using the Bellman equation such that 
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3. If 1
( ) ( )

i t i t
V x V x


 , then a fixed point has been found 

and the problem is solved, if not we go back to 2, and iterate on 

the process untilconvergence. 

In other words, solving the Bellman equation just amounts to 

find the fixedpoint of the bellman equation, or introduction an 

operator notation, findingthefixed point of the operator T, such 

that 

1i i
V T V


  

whereT stands for the list of operations involved in the 

computation of theBellman equation. The problem is then that 

of the existence and the uniqueness of this fixed-point. 
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Luckily, mathematicians have provided conditions forthe 

existence and uniqueness of a solution. 

Existence and uniqueness of a solution 

Definition 1 A metric space is a set S, together with a metric 

: S S


  , such that for all , , :x y z S  

1. ( , ) 0x y  , with ( , ) 0x y  if and only if x y , 

2. ( , ) ( , )x y y x   

3. ( , ) ( , ) ( , )x y x y y z     

Definition 2 A sequence  
0n n

x



 in S converges to x S , if 

for each 0   there exists an integer N
 such that 

( , )
n

x x fo r a ll n N


    

Definition 3 A sequence  
0n n

x



in S is a Cauchy sequence if 

for each  0  there exists an integer  N
 such that 

( , ) ,
n m

x x fo r a ll n m N


    

Definition 4 A metric space ( , )S   is complete if every 

Cauchy sequence inS converges to a point in S. 

Definition 5 Let ( , )S   be a metric space and :T S S be 

function mappingS into itself. T is a contraction mapping (with 

modulus  ) if for (0 ,1)   

( , ) ( , )
x y

T T x y   , for all ,x y S . 

We then have the following remarkable theorem that 

establishes the existence and uniqueness of the fixed point of a 

contraction mapping. 

Theorem 1 (Contraction Mapping Theorem) If ( , )S  is a 

complete metric space and :T S S is a contraction 

mapping with modulus (0 ,1)  , then 

1. T has exactly one fixed pointV S  such that V = T V , 

2. for any V S , 0

0
( , ) ( , ) ,

n n
T V V V V    with n = 0, 

1, 2 … 

Since we are endowed with all the tools we need to prove the 

theorem, we shall do it. 

Proof: In order to prove 1., we shall first prove that if we select 

any sequence  
0n n

V




, such that for each n, 
n

V S and 

Vn+1 = T Vnthis sequence converges and that it converges to 

V S . In order to show convergence of  
0n n

V




, we shall 

prove that  
0n n

V



 is a Cauchy sequence. First of all, note that 

the contraction property of T implies that 
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consider two terms of the sequence, VmandVn, m > n. The 

triangle inequality implies that 
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(0 ,1) , 0
n

   as n   , we have that for each 0  , 

there exists N

  such that ( , )

m n
V V  . Hence  

0n n
V




is 

a Cauchy sequence and it therefore converges. Further, since 

we have assume that S is complete, Vn converges to V S . 

We now have to show that V = T V in order to complete the 

proof of the first part. Note that, for each 0  , and 

for
0

V S  the triangular inequality implies 

( , ) ( , ) ( , )
n n

V T V V V V T V     

But since 
0n n

V



  is a Cauchy sequence, we have 

( , ) ( , ) ( , )
2 2

n n
V T V V V V T V

 
      for large enough 

n, therefore V = T V . 

Hence, we have proven that T possesses a fixed point and 

therefore have established its existence. We now have to prove 

uniqueness. This can be obtained by contradiction. Suppose, 

there exists another function, say W   S that satisfies W = T 

W . Then, the definition of the fixed point implies 
( , ) ( , )V W T V T W   

but the contraction property implies 

( , ) ( , ) ( , )V W T V T W V W      

which, as 0   implies ( , ) 0V W   and so V = W . The 

limit is then unique.  

Proving 2.is straightforward as 
1

0 0 0
( , ) ( , ) ( , )

n n n
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
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0 0
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n n
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  such that 

1 2 2
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n n n n n
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    

which completes the proof 

This theorem is of great importance as it establishes that any 

operator that possesses the contraction property will exhibit a 

unique fixed-point, which therefore provides some rationale to 

the algorithm we were designing in the previous section. It also 

insure that whatever the initial condition for thisalgorithm, if 

the value function satisfies a contraction property, simple 

iterations will deliver the solution. It therefore remains to 

provide conditions for the value function to be a contraction. 

These are provided by the following theorem. 

Theorem 2(Blackwell's Sufficiency Conditions) Let 

X 
`
 and B(X) be the space of bounded functions 

:V X  with the uniform metric. 

Let : ( ) ( )T B X B X  be an operator satisfying 

1. (Monotonicity) Let 

, ( ) , ( ) ( )V W B X if V x W x fo r a ll x X   , then 

( ) ( )T V x T W x  

2. (Discounting) There exists some constant (0 ,1)   such 

that for all ( )V B X and 0a  , we have  

( )T V a T V a    

thenT is a contraction with modulus .  

Proof: Let us consider two functions , ( )V W B X satisfying 

1. and 2., and such that  

( , )V W V W   

Monotonicity first implies that 

( ( , ))T V T W V W   

and discounting 
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( ( , ))T V T W V W    

since ( , ) 0V W  plays the same roles as a . We therefore get 

( , )T V T V W    

Likewise, if we now consider that ( , )V W V W  , we end up 

with 

( , )T W T V V W    

Consequently, we have   

( , )T W T V V W    

so that 

( ) ( , )T W T V V W    

Which defines a contraction. This completes the proof. 

This theorem is extremely useful as it gives us simple tools to 

check whether a problem is a contraction and therefore permits 

to check whether the simple algorithm we were defined is 

appropriate for the problem we have in hand. 

As an example, let us consider the optimal growth model, for 

which the Bellman equation writes 

1
( ) m a x ( ) ( )

t

t t t
c

V k u c V k




 
C

 

withkt+1 = F (kt) - ct. In order to save on notations, let us drop 

the time subscript and denote the next period capital stock by 

k  , such that the Bellman equation rewrites, plugging the law 

of motion of capital in the utility function 

( ) m ax ( ( ) ) ( )
k

V k u F k k V k


   
R

 

Let us now define the operator T as 

( ) m ax ( ( ) ) ( )
k

T V k u F k k V k


   
R

 

We would like to know if T is a contraction and therefore if 

there exists a unique function V such that 

V (k) = (T V )(k) 

In order to achieve this task, we just have to check whether T is 

monotonic and satisfies the discounting property. 

Monotonicity: Let us consider two candidate value functions, V 

and W , such that ( ) ( )V k W k for all k R . What we 

want to show is that ( ) ( ) ( )T V k T W k . In order to do that, let 

us denote by k  the optimal next period capital stock, that is 

( ) ( ( ) ) ( )T V k u F k k V k     

But now, since ( ) ( )V k W k for all k R , we have 

( ) ( ) ,K k W k  such that it should be clear that 

( ) ( ( ) ) ( )T V k u F k k V k     

m a x ( ( ) ) ( ) ( ( ) )
k

u F k k W k T W k


     
R

Hence we 

have shown ( ) ( ) ( )V k W k that implies ( ) ( ) ( )T V k T W k and 

therefore established monotonicity. 

 

III.DISCOUNTING: LET US CONSIDER A 

CANDIDATE VALUE FUNCTION, V , AND A 

POSITIVE CONSTANT A. 

 

( ( )) ( ) m ax ( ( ) ) ( ) )
k

T V a k u F k k V k a


     
R

m ax ( ( ) ) ( ) )
k

u F k k V k a 


    
R

 

= ( )T V k a  

Therefore, the Bellman equation satisfies discounting in the 

case of optimal growth model. 

Hence, the optimal growth model satisfies the Blackwell's 

sufficient conditions for a contraction mapping, and therefore 

the value function exists and is unique. 
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