ISSN: 2278-2397

Few More Results on Sum Labeling of Split Graphs

J.Gerard Rozario

Department of Mathematics, IFET College of Engineering, Villupuram, Tamil Nadu, India Email: rozario.gerard@yahoo.com

Abstract- A sum labeling is a mapping λ from the vertices of G into the positive integers such that, for any two vertices u, $v \in V(G)$ with labels $\lambda(u)$ and $\lambda(v)$, respectively, (uv) is an edge iff $\lambda(u) + \lambda(v)$ is the label of another vertex in V(G). Any graph supporting such a labeling is called a sum graph. It is necessary to add (as a disjoint union) a component to sum label a graph. This disconnected component is a set of isolated vertices known as isolates and the labeling scheme that requires the fewest isolates is termed optimal. The number of isolates required for a graph to support a sum labeling is known as the sum number of the graph. In this paper, we will obtain optimal sum labeling scheme for path union of split graph of star, $K_{1,m} \odot Spl(P_n)$ and $K_{1,m} \odot Spl(K_{1,n})$.

Keywords: Sum Labeling, Sum graph, Sum number, split graph, path union. 2010 AMS Subject Classification: 05C78

I. INTRODUCTION

All the graphs considered here are simple, finite and undirected. For all terminologies and notations we follow Harary [1] and graph labeling as in [2]. Sum labeling of graphs was introduced by Harary [3] in 1990. Following definitions are useful for the present study.

Definition 1.1 Sum Labeling is a mapping λ from the vertices of G into the positive integers such that, for any two vertices u, $v \in V(G)$ with labels $\lambda(u)$ and $\lambda(v)$, respectively, (uv) is an edge iff $\lambda(u) + \lambda(v)$ is the label of another vertex in V(G). Any graph supporting such a labeling is called a Sum Graph.

Definition 1.2 It is necessary to add (as a disjoint union) a component to sum label a graph. This disconnected component is a set of isolated vertices known as *Isolates* and the labeling scheme that requires the fewest isolates is termed *Optimal*.

Definition 1.3 The number of isolates required for a graph G to support a sum labeling is known as the *Sum Number* of the graph. It is denoted as $\sigma(G)$.

Definition: 1.4 (Shiama [4]) For a graph G the split graph is obtained by adding to each vertex \mathbf{v} , a new vertex \mathbf{v}' such that \mathbf{v}' is adjacent to every vertex that is adjacent to \mathbf{v} in G. The resultant graph is called the Split Graph denoted by Spl (G).

Definition 1.5 (Shee and Ho. et al [5]) Let G_1 , G_2 ,..., G_n , $n \ge 2$ be n copies of a fixed graph G. The graph obtained by adding

an edge between G_i and G_{i+1} for i = 1, 2,..., n-1 is called *path union* of G.

II. SUM LABELING FOR SPLIT GRAPHS

In [6], Gerard et. al has proved that split graph of path, star are sum graph with sum number 1 and bi – star is sum graph with sum number 2.

Theorem: 2.1 Path union of split graph of star $K_{1,n}$ is a sum graph with sum number 1.

Proof: Consider a star $K_{1,n}$ with (n+1) vertices. Let G be the split graph of star, Spl $(K_{1,n})$. Let G* be the path union of m copies of G. Let $v_1, v_{11}, v_{12}, \ldots, v_{1n}, v_2, v_{21}, v_{22}, \ldots, v_{2n}, \ldots, v_m, v_m, v_{m1}, v_{m2}, \ldots, v_{mn}$ be the vertices of m copies of the star $K_{1,n}$. Let $u_1, u_{11}, u_{12}, \ldots, u_{1n}, u_2, u_{21}, u_{22}, \ldots, u_{2n}, \ldots, u_m, u_m, u_{m1}, u_{m2}, \ldots, u_{mn}$ be the vertices corresponding to $v_1, v_{11}, v_{12}, \ldots, v_{1n}, v_2, v_{21}, v_{22}, \ldots, v_{2n}, \ldots, v_m, v_m, v_{m1}, v_{m2}, \ldots, v_{mn}$ of m copies of the star $K_{1,n}$ which are added, to obtain the split graph of m copies of star. G* has 3nm vertices and 3nm + (m-1) edges. Let x be the isolated vertex.

Define f: $V(G^*) \rightarrow N$

$$f(v_1) = 1 f(v_2) = 2 f(v_i) = f(v_{(i-1)})f(v_{(i-2)}) for 3 \le i \le m f(v_{11}) = f(v_m) + f(v_{(m-1)}) for 1 \le i \le m$$

$$\begin{cases} f(v_{ij}) = f(v_{i(j-1)}) + f(v_i) & \text{for } 2 \leq j \leq n \\ f(u_i) = f(v_{in}) + f(v_i) \\ f(u_{i1}) = f(u_i) + f(v_{i1}) \\ f(u_{ij}) = f(u_{i(j-1)}) + f(v_i) & \text{for } 2 \leq j \leq n \\ f(v_{(i+1)1}) = f(u_{in}) + f(v_i) & \text{if } i \neq m \\ f(x) = f(u_{mn}) + f(v_m) \end{cases}$$

Thus, Path union of Split graph of star $K_{1,n}$ is a sum graph with sum number 1.

Illustration: Sum labeling for path union of split graph of star $K_{1,n}$ is given in figure 2.1

ISSN: 2278-2397

$$f(x) = f(u_{mn}) + f(v_{m(n-1)})$$

Hence, $K_{1,m} \odot Spl(P_n)$ is a sum graph with sum number 1.

Illustration: Sum labeling for $K_{1,m} \odot Spl(P_n)$ is given in figure 2.2

Figure 2.3

Proof: Let c, v_1, v_2, \ldots, v_m be the vertices of $K_{1,m}$ where c is the centre of the star. Let $v_{11}, v_{12}, \ldots, v_{1n}, u_{11}, u_{12}, \ldots, u_{1n}, v_{21}, v_{22}, \ldots, v_{2n}, u_{21}, u_{22}, \ldots, u_{2n}, \ldots, v_{m1}, v_{m2}, \ldots, v_{mn}, v_{m1}, u_{m2}, \ldots, v_{mn}$ be the vertices of the m copies of the split graph of path P_n . The vertices $v_{11}, v_{21}, \ldots, v_{m1}$ are attached to the vertices $v_{1}, v_{2}, \ldots, v_{m}$ respectively. Let $G = K_{1,m} \odot Spl(P_n)$. Therefore the vertex set of G, $V(G) = \{c, v_{11}, v_{12}, \ldots, v_{1n}, v_{11}, u_{12}, \ldots, u_{1n}, v_{21}, v_{22}, \ldots, v_{2n}, u_{21}, u_{22}, \ldots, v_{2n}, \ldots, v_{mn}, v_{m1}, v_{m2}, \ldots, v_{mn}, v_{m1}, v_{m2}, \ldots, v_{mn}, v_{m1}, v_{m2}, \ldots, v_{mn}, v_{m1}, v_{m2}, \ldots, v_{mn}\}$. G has 2nm+1 vertices and 3n(n-1)+m edges. Let x be the isolated vertex.

$$f(c) = 1 f(v_{11}) = 2$$

$$for 1 \le i \le m$$

$$\begin{cases}
f(v_{i2}) = f(v_{i1}) + 1 \\
f(v_{ij}) = f(v_{i(j-1)}) + f(v_{i(j-2)}) & for 3 \le j \le n \\
f(u_{i1}) = f(v_{i(n-1)}) + f(v_{in}) \\
f(u_{i2}) = f(u_{i1}) + 1 \\
f(u_{ij}) = f(u_{i(j-1)}) + f(v_{i(j-2)}) & for 3 \le j \le n \\
f(v_{(i+1)1}) = f(u_{in}) + f(v_{i(n-1)}) & if i \ne m
\end{cases}$$

 $K_{1,m} \bigcirc Spl(K_{1,n})$

Define f: $V(G) \rightarrow N$

Figure 2.1 $K_{1,m} \bigcirc Spl(P_n)$

each pendent vertex of $K_{1,m}$.

 $K_{1,m} \odot Spl(P_n)$ is obtained by attaching a copy of $Spl(P_n)$ to

Theorem: 2.2 $K_{1,m} \odot Spl(P_n)$ is a sum graph with sum number 1

Figure 2.2

International Journal of Computing Algorithm Volume: 03 Issue: 03 December 2014 Pages: 252-254

ISSN: 2278-2397

 $K_{1,m} \odot Spl(K_{1,n})$ is obtained by attaching a copy of $Spl(K_{1,n})$ to each pendent vertex of $K_{1,m}$.

Theorem: 2.3 $K_{1,m} \odot Spl(K_{1,n})$ is a sum graph with sum number 1.

Proof: Let c, v₁, v₂,....., v_m be the vertices of $K_{1,m}$ where c is the centre of the star. Let c_1 , v₁₁, v₁₂,, v_{1n}, u₁, u₁₁, u₁₂,, v_{1n}, c₂, v₂₁, v₂₂,, v_{2n}, u₂, u₂₁, u₂₂,, u_{2n},....., c_m, v_{m1}, v_{m2},, v_{mn}, u_m, u_{m1}, u_{m2},, u_{mn} be the vertices of the m copies of the split graph of star $K_{1,n}$. The vertices c_1 , c_2 ,....., c_m are attached to the vertices v_1 , v_2 ,....., v_m of $K_{1,n}$ respectively. Let $G = K_{1,m} \odot \text{Spl}(K_{1,n})$. Therefore the vertex set of G, $V(G) = \{c, c_1, v_{11}, v_{12},, v_{1n}, u_1, u_{11}, u_{12},, u_{1n}, c_2, v_{21}, v_{22},, v_{2n}, u_2, u_{21}, u_{22},, u_{2n},, c_m, v_{m1}, v_{m2},, v_{mn}, u_m, u_{m1}, u_{m2},, u_{mn} \}$. G has 2nm + 1 vertices and 3n(n-1) + m edges. Let x be the isolated vertex.

Define f: V (G)
$$\rightarrow$$
 N
 $f(c) = 1$ $f(c_1) = 2$
 $f(c_i) = f(c_{(i-1)}) + 1$ for $2 \le i \le m$
 $f(v_{11}) = f(c_m) + 1$
for $1 \le i \le m$

$$\begin{cases} f(v_{ij}) = f(v_{i(j-1)}) + f(v_i) \text{ for } 2 \leq j \leq n \\ f(u_i) = f(v_{in}) + f(c_i) \\ f(u_{i1}) = f(u_i) + f(v_{i1}) \\ f(u_{ij}) = f(u_{i(j-1)}) + f(c_i) \text{ for } 2 \leq j \leq n \\ f(v_{(i+1)1}) = f(u_{in}) + f(c_i) \text{ if } i \neq m \end{cases}$$

$$f(x) = f(u_{mn}) + f(c_m)$$

Thus, $K_{1,m} \odot Spl(K_{1,n})$ is a sum graph with sum number 1.

Illustration: Sum labeling for $K_{1,m} \odot Spl(K_{1,n})$ is given in figure 2.3 m=3; n=2

REFERENCES

- [1] Harary F, Graph theory, Addison Wesley, Reading, Massachusetts,
- [2] Gallian J A, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 16, (2009) DS6.
- [3] Harary F, Sum graphs and Difference graphs, Congress Numerantium, no.72, 101-108, 1990
- [4] Shiama. J, Permutation Labeling for some shadow graphs, International Journal of Computer Applications (0975 – 8887), Volume 40 – No.6, February 2012.
- [5] S.C. Shee , Y. S Ho (1996), "The cardiality of Path-union of n copies of a Graph", Discrete Math, 151, 221-229
- [6] Gerard Rozario J, Jon Arockiaraj J and Lawrence Rozario Raj. P, Sum Labeling for some Split graphs, International Journal of Computational and Applied Maths, in press.