ISSN: 2278-2397

Some New Classes of 3-Total Product Cordial Graphs

V. Sharon Philomena, A. Hemalatha
P. G. Department of Mathematics, Women's Christian College, Chennai
Email: sharon_philomena@yahoo.com

Abstract - In [3], Ponraj. R et al have defined the 3- Total Product Cordial of a graph G (V, E) as follows, Let f be a function from V(G) to $\{0, 1, ... k - 1\}$ where k is an integer, $2 \le k \le V(G)$. For each edge uv assign the label f (u) f (v) (mod k). f is called a k - Total Product cordial labeling if f (i) - f (j) ≤ 1 , i, j $\in \{0, 1, ... k - 1\}$ where f(x) denotes the total number of vertices and edges labeled with x(x = 0, 1, 2,, k-1). We prove that the 3-Total Product cordial labeling is a behaviour of F_n

Keywords- Binary labeling, cordial labeling, Product cordial, k-Total product cordial .

I. INTRODUCTION

Graph labeling methods trace their origin to the graceful labeling introduced by Rosa [5] in 1967. In [4] Ponraj. R *et al* introduced a new graph labeling method called the 3-Total product cordial labeling, using the concept of k-Total product cordial labeling.

A. Definition

The vertex labeling f^* is said to be a binary labeling if f^* : $V(G) \rightarrow \{0, 1\}$ such that each edge xy is assigned the label $|f^*(x) - f^*(y)|$.

B. Definition

A binary vertex labeling of a graph G is called a cordial labeling if $| v_f(0) - v_f(1) | \le 1$ and $| e_f(0) - e_f(1) | \le 1$. A graph G is called cordial if it admits cordial labeling.

C. Definition

A binary vertex labeling of graph G with induced edge labeling $f^*: E(G) \to \{0, 1\}$ defined by $f^*(e = uv) = f(u)f(v)$ is called a Product cordial labeling if $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$. A graph is called Product cordial if it admits Product cordial labeling.

D. Definition

A total product cordial labeling of a graph G is a function $f: (V(G) \cup E(G)) \rightarrow \{0,1\}$ such that $f(xy) = f(x) \, f(y)$ where x, y $\in V(G), \, xy \in E(G)$ and the total number of 0's and 1's are balanced i.e. if v_f (i) and e_f (i) denote the set of vertices and edges which are labeled as i for i=0,1 respectively, then $\big| \, (v_f(0) + e_f(0)) - (v_f(1) + e_f(1)) \, \big| \leq 1$. If there exists a total product cordial labeling of a graph G then it is called a Total product cordial graph.

E. Definition

Let f be a function from V(G) to $\{0, 1, ...k-1\}$ where k is an integer, $2 \le k \le |V(G)|$. For each edge uv assign the label f (u)f(v)(mod k). f is called a k-Total product cordial labeling if

 $(f(i) - f(j)) \le 1, i, j \in \{0, 1, ...k-1\}$ where f(x) denotes the total number of vertices and edges labeled with x (x = 0, 1,2..., k-1). A graph that admits a k-Total product cordial labeling is called k -Total product cordial graph. M. Sundaram et al(2012) [3] proved the following graphs are total product cordial. Every product cordial graph of even order or odd order and even size; all cycles except C_n. C_n with m edges appended at each vertex; The fan graph f_{n-1} where $(f_{n-1} = P_{n-1} +$ K_1) and wheel graph W_n where $(W_n = C_{n\text{-}1} + K_1)$. The Helm graph is H_n (obtained from a wheel graph by attaching a pendent edge at each vertex of the n-cycle). A wheel graph W_n with is defined to be the $C_{n-1} + K_1$ of a isolated vertex with the cycle of length n. The helm graph H_p is the graph obtained from a wheel graph by attaching a pendant edge at each vertex of the n-cycle. The flower graph F_n is the graph obtained from the helm by attaching each pendent edge vertex to the centre vertex of the Wheel (W_n). In this paper, we compute the 3-Total product cordial labeling on flower graphs.

II. MAIN RESULT

In this section we prove that the flower graph F_n is 3-Total product cordial graphs. We prove this in the following theorems. Theorem: The flower graph F_n is 3 - Total product cordial labeling.

Proof: Denote the central vertex of the flower graph, F_n as u. The vertex u is called the hub vertex of the flower graph. Denote the vertices in the cycle of the flower as $u_1, u_2, u_3, \ldots, u_{n-1}, u_n$ in the clockwise direction. Denote the end-vertices of the flower as $v_1, v_2, v_3, \ldots, v_{n-1}, v_n$ in the clockwise direction. Denote the edges incident with u as $c_1, c_2, c_3, \ldots, c_{m-1}, c_m$ in the clockwise direction. Denote the edges of the cycle in the flower as $e_1, e_2, e_3, \ldots, e_{m-1}, e_m$ in the clockwise direction. Denote the pendant edges of the flower as $d_1, d_2, d_3, \ldots, d_{m-1}, d_m$ in the clockwise direction. Denote the edge which is attached to the center vertex and with the pendent vertex as $a_1, a_2, a_3, \ldots, a_{m-1}, a_m$ again in the clockwise direction.

Figure 1: 3-Total product cordial of flower F_n

ISSN: 2278-2397

In order to compute the 3-Total product cordial for the flower graph, we first label the vertex of the flower F_n and verify that these vertex labels are 3-Total product cordial as follows.

Let f be a function from V(G) to $\{0,1,2\}$. For edge uv assign the label f(u)f(v) (mod3). Now we calculate the 3-Total product cordial for the flower graph as follows.

Figure:2

Figure:3

Figure:4

f is called a 3-Total product cordial labeling of G if $\begin{tabular}{l} f(i) - f(j) \begin{tabular}{l} \le 1, i, j \in \{0, 1, 2\} \end{tabular}$ where f(x) denotes the total number of vertices and the total number of edges labeled with x(x=0, 1, 2). There are three cases for labeling the vertices of the flower in order to obtain the 3-Total product cordial for flower graph F_n

When $n \equiv 0 \pmod{3}$

In this case we take n = 3t; t = 1,2,3,...

Define the vertex labels of flower F_n as follows.

f(u) = 0

$$f(u_i) = 2 ; 1 \le i \le n$$

 $f(v_i) = 2 ; 1 \le i \le n$ (1)

Case 1: When $n \equiv 0 \pmod{3}$, If t = 3; n = 9 Here f(0) = 6t + 1 = 19, f(1) = f(2) = 6t = 18

Figure: 5 Total product cordial on Flower graph F₉

From the equation (1) the total number of vertices and edges labeled 0 is calculated as

$$f(0) = 6t + 1 \tag{2}$$

From the equation (1) the total number of vertices and edges labeled 1 and 2 is calculated as

$$f(1) = f(2) = 6t (3)$$

Therefore f is 3–Total product cordial labeling.

B. Case 2

When $n \equiv 1 \pmod{3}$

In this case we take n-1 = 3t; t = 1,2,3,...

Define the vertex labels of flower F_n as follows.

$$f(u) = 0$$

$$f(u_i) = 2 ; 1 \le i \le n$$

 $f(v_i) = 2 ; 1 \le i \le n$ (4)

From the equation (4) the total number of vertices and edges labeled 0 is calculated as

$$f(0) = 6t + 3 (5)$$

Figure: 6 Total product cordial on Flower graph F₁₃

Case 2: When
$$n \equiv 1 \pmod{3}$$
, If $t = 4$; $n = 13$, Here $f(0) = 6t + 3 = 27$, $f(1) = f(2) = 6t + 2 = 26$

From the equation (5) the total number of vertices and edges labeled 1 and 2 is calculated as

$$f(1) = f(2) = 6t + 2 \tag{6}$$

Therefore f is 3-Total product cordial labeling

C. Case 3

When $n \equiv 2 \pmod{3}$

In this case we take n-2 = 3t; t = 1,2,3,...

Define the vertex labels of flower F_n as follows:

$$f(u) = 0$$

International Journal of Computing Algorithm Volume: 03 Issue: 02 June 2014 Pages: 128-130

ISSN: 2278-2397

$$f(u_i) = 2 ; 1 \le i \le n$$

 $f(v_i) = 2 ; 1 \le i \le n$ (7)

From the equation (7) the total number of vertices and edges labeled 0 is calculated as

$$f(0) = 6t + 5 \tag{8}$$

Figure: 7 Total product cordial on Flower graph F₁₁

From the equation (3.8) the total number of vertices and edges labeled 1 and 2 is calculated as

$$f(1) = f(2) = 6t + 4 (9)$$

Hence the graph F_n is 3-Total product cordial labeling.

The illustrations for the various cases of the above theorem are given in the appendix. Further the sub-division of flower graph which admits 3- total product cordial is been proved and Cartesian product of flower graph with a complete graph $K_1 \, \text{can}$ be computed .

REFERENCES

- [1] Cahit. I(1987), cordial graphs: A weaker version of Graceful and Harmonious graphs, Ars combinatories, Vol. 23, pp.201-207.
- [2] Gallian. J(2011), A dynamic survey of graph labeling, The electronic journal of combinatorics pp. 16.
- [3] Harary. F, Graph Theory, Addison Wisely(1969), New Delhi.
- [4] Hemalatha. A, Sharon Philomena. V, Some new classes of 3-Total product cordial graphs(preprint)
- [5] Ponraj. R, Sivakumar. M, Sundaram. M(2012), k Product cordial labeling of graphs, Int. J. Contemp. Math. Sciences, Vol.7, no. 15, pp. 733-742
- [6] Ponraj. R, Sivakumar. M, Sundaram. M(2012), On 3-Total product cordial graphs, International Mathematical Forum, Vol.7, no. 31, pp.1537-1546.
- [7] Ramanjaneyulu. K(2009), 'Cordial labelings of a Class of Planar Graphs', AKCE J. AKCE J. graphs. Combinatorics, Vol.1, pp. 171-181.
- [8] Rosa. A, 'On certain valuation of the vertices of a Graph Theory of graph' (International symposium Rome, July 1966) Gordon and Breach. N. Y and Dound, Paris, (1967), pp. 349-355.
- [9] Sundaram. M, Ponraj. R, Somasundaram. S(2005), Total product cordial labeling of graphs, Bulletin of Pure and Applied Sciences, no. 25 E, pp. 199-203.