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Abstract - Design of interconnection networks is an important 

integral part of the parallel processing or distributed systems. 

There are a large number of topological choices for intercon-

nection networks. Among several choices, the Shuffle Ex-

change Network is one of the most popular versatile and effi-

cient topological structures of interconnection networks. In this 

paper, we have given a new method of drawing shuffle ex-

change network for any dimension. This has enabled us to in-

vestigate some of the topological properties of shuffle-

exchange network.  Also we give an approximation algorithm 

for achromatic number of shuffle-exchange network. 
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I. INTRODUCTION 

 

An interconnection network consists of a set of processors, 

each with a local memory, and a set of bidirectional links that 

serve for the exchange of data between processors. A conven-

ient representation of an interconnection network is by an undi-

rected (in some cases directed) graph    G = (V, E) where each 

processor is a vertex in V and two vertices are connected by an 

edge if and only if there is a direct (bidirectional for undirected 

and unidirectional for directed graphs) communication link 

between processors. We will use the term interconnection net-

work and graph interchangeably. 

 

A. The Shuffle Exchange Network 

Definition -Let Qn denote an n - dimensional hypercube. The n  

dimensional shuffle - exchange network, denoted by SE(n), has 

vertex set V = V(Qn), and two vertices x = x1x2…xn and y = 

y1y2…yn are adjacent if and only if either 

 

(i) x and y differ in precisely the n
th

 bit, or 

(ii) x is a left or right cyclic shift of y.  

 

The edge defined by the condition (i) is called an exchange edge, 

and (ii) is called a shuffle edge. The condition (ii) means that ei-

ther y1y2…yn = x2x3….xnx1 or y1y2…yn = xnx1x2….xn – 2xn – 1. 

 As an example, the 8-node shuffle exchange graph is given in 

Figure 1. The shuffle edges are drawn with solid lines while the 

exchange edges are drawn with dashed lines [6].For higher di-

mension, it is generally understood that drawing shuffle-exchange 

network is quite challenging.  

We have redrawn the Shuffle-Exchange network considering the 

power set of   X = {2
0
, 2

1
,…, 2

n
 
– 1

} as vertices. This has enabled 

us to present a good drawing of the Shuffle-Exchange network for 

any dimension. 

 
 

Figure 1 The 8 - node Shuffle Exchange Network 

 

II. NEW REPRESENTATION OF THE SHUFFLE 

EXCHANGE NETWORK 

 

Definition-Let X = {2
0
, 2

1
,…, 2

n
 
– 1

} and let P(X) denote the 

power set of X. We construct a graph G* with vertex set P(X) 

where  

(i) Two nodes S and S’ are adjacent if and only if S  S’ = {2
0
} 

(ii) If | S | = | S’ | = k, where S = { 1 2 k2 ,2 , ..., 2
x x x

} and S’ = 

{ 1 2 ky y y
2 ,2 , ..., 2 }, then S and S’ are adjacent if and only if 

yi = (xi +1) mod n for all 1  i  k. See Figure 2. 

 
 

Figure 2 New Drawing of the Shuffle-Exchange Network 

 
Theorem 1 The two definitions of Shuffle-Exchange network 

of dimension n are equivalent. In other words, the graph G* 

constructed in definition 2 is isomorphic to the graph G given 

in definition 1. 

 

Proof.  Let G and G* be the graphs defined by definition 1 and 

definition 2 respectively. First we associate with each binary 

string of length n, a set S in P(X).. 

 

Let u = (u1, u2, ..., un), ui  {0, 1} be an arbitrary string. If ui = 

1, then let 2
n-i

  S. If ui = 0, then 2
n-i

  S. If ui = 0 for every i, 

then S =  . For example, the string 000 is associated with  , 

001 is associated with {2
0
}, 010 with {2

1
}, 100 with {2

2
}, 011 

with {2
0
, 2

1
}, 101 with {2

0
, 2

2
}, 110 with {2

1
, 2

2
}, and 111 

with {2
0
, 2

1
, 2

2
}. 

 

Define : ( ) ( *)f V G V G  by f(u) = f(u1, u2, ..., un) = S where 

2
n-i

  S if ui = 1, 2
n-i

  S if ui = 0, 1 i n  . 

Clearly f is well-defined, for, u = v   ui = vi,  i = 1, 2, ..., n 
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      f(u) = f(v) 

      S = S' 

 

f is one - one: Let S, S'  V(G*) such that S = S' = 

 1 22 , 2 , ..., 2 kxx x
  f(u) = f(u') 

   ui = 1 = ui', 1 i k   

    u = u'. 

f is onto: For every S  V(G*), there exists u = (u1, u2, ..., 

un) V(G) such that ui = 1 if 2
n-i

  S and ui = 0 if 2
n-i

  S, 

1 i n   satisfying f(u) = S. 

 

f preserves adjacency: Let e = uv be an exchange edge in G. To 

prove, f(e) = SS' is an exchange edge in G*. 

By definition, u and v differ in exactly the n
th

 bit. That is, if un 

= 0, then vn = 1 and vice versa  2
0
 S and 2

0
  S', that is, if S 

= {2
0
, 2

1
, 2

2
, ..., 2

n-1
}, then S' = {2

1
, 2

2
, ..., 2

n-1
}. 

 

Hence S  S' = {2
0
}   SS' is an exchange edge in G*. 

Conversely, Let SS' be an exchange edge in G*. In other words, 

if S =  1 20
2 , 2 , 2 , ..., 2 kxx x , then S' =  1 22 , 2 , ..., 2 kxx x . 

This implies 
1 2

...
kn x n x n x

u u u
  

   = 1 = 
1 2

. . .
n x n x

v v
 

   

kn x
v


 , the rest of u and v are zero with un = 1 and vn =0. 

Hence u and v differ in exactly the n
th

 bit. 

  uv is an exchange edge in G. 

 

Let e = uv be a shuffle edge in G. Then u = (u0, u1, ..., un-1) is a 

left (or a right) cyclic shift of v = (v0, v1, ..., vn-1), that is, v0v1 

...vn-1 = u1u2...un-1u0   vi = u(i + 1) mod n. For every ui = 1, 

0 1i n   , there exists xj such that S =  1 22 , 2 , ..., 2 kxx x  and 

f(u) = S. Since vi = u(i + 1) mod n, there exists y1, y2, ..., yk such that 

yi = (xi + 1) mod n for all 1 i k   and 

f(v)=S'= 1 22 , 2 , ..., 2 kyy y .  

Hence f(e) = f(uv) = f(u)f(v) = SS' is a shuffle edge in G* 

. 

Conversely, let SS' be a shuffle edge in G*. That is, if S = 

 1 22 , 2 , ..., 2 kxx x , then S'=  1 22 , 2 , ..., 2 kyy y  such that yi = (xi + 

1) mod n for all 1 i k  . This means yi is moved one step 

forward from the position of xi and if xi = n - 1, then yi = 0. 

There exists u, v  G such that u is a left cyclic shift of v. 

Hence uv is a shuffle edge in G. 

Thus f preserves adjacency. □ 

 

Remark 1- We draw this graph excluding the loops and parallel 

edges so that the graph is simple. See Figure 3. 

Theorem 2 Let G be the shuffle-exchange network SE(n). Then 

( ) 2
n

V G  and 21

2

1

C

3 2 3     if    C    ×   =  2
( )

3 2 2    o th e rw ise

n

n

n n

n

n

n
nE G

 
 

 
 



  

  
    

 
 
 


 

. 

 

Proof:   Obviously ( ) 2
n

V G  . Degree of each vertex is 3. Hence 

there are 3. 2
n-1

 edges. Since the new drawing of SE(n) does not 

contain loops and parallel edges, by removing the loops, the num-

ber of edges becomes 3. 2
n-1

 - 2. In particular, the graphs SE(4), 

SE(6), SE(10), SE(14), etc which satisfy the condition 

2

2

C

C    ×   =  2

n

n
n

n
n

n

 
 

 
 

 

 


 

  

 contain a pair of parallel edges in 

the middle row of vertices. Hence removing a parallel edge reduc-

es the number of edges by one. Hence the result follows. □ 

 

Figure 3 The 4-dimensional Shuffle Exchange Network. 

Dotted lines represent deleted loops and parallel edge 

 

Figure 4 Shuffle-Exchange Network of dimension 4 

 
Definition- The removal of the exchange edges partitions the 

graph into a set of connected components called necklaces. Each 

necklace is a ring of nodes connected by shuffle edges. Figure 4 

shows shuffle exchange network SE(4). Figure 5 shows the neck-

laces of SE(4) after removing all the exchange edges. The nodes 

0010, 0100, 1000 and 0001 form a 4-node necklace. 

 

Figure 5 The necklaces of SE(4) 

Theorem 3 The diameter of SE(n) is equal to 2 1n  . 

 

Proof. The longest path between any two vertices of SE(n) is the 

path between the pendant vertices at the beginning and the end. 

Hence diam(SE(n)) = 2n - 1. □ 
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Conjecture 1 SE(n), 4n  , does not contain a Hamiltonian path. 

□ 

Theorem 4 The number of n - node necklaces in SE(n) is 
1

1

nn

r

r

C

n





 

 

 

 . 

 

Proof. The new drawing of SE(n) shows that the number of verti-

ces are divided into n + 1 partitions each containing 
n

r
C , 

0,1, 2, ...,r n  vertices. Each partition contains 
n

r
C

n

 

 

 

 number of 

n - node necklaces. Thus the number of n - node necklaces in 

SE(n) is 
1

1

nn

r

r

C

n





 

 

 

 .□ 

In Figure 5, there are three 4 - node necklaces. 

 

A. The Achromatic Labeling 

Graph labeling enjoys many practical applications as well as theo-

retical challenges. Besides the classical types of problems, differ-

ent limitations can also be set on the graph, or on the way a colour 

is assigned, or even on the colour itself. Scheduling, Register allo-

cation in compilers, Bandwidth allocation, and pattern matching 

are some of the applications of graph colouring. 

Definition-The achromatic number of a graph G, denoted by 

 (G), is the greatest number of colours in a vertex colouring 

such that for each pair of colours, there is at least one edge whose 

endpoints have those colours. Such a colouring is called a com-

plete colouring. More precisely, the achromatic number for a 

graph G = (V, E) is the largest integer m such that there is a parti-

tion of V into disjoint independent sets (V1,…,Vm) such that for 

each pair of distinct sets Vi , Vj , Vi  Vj is not an independent set 

in G.The achromatic number of a path of length 4,  (P4) = 3. See 

Figure 6. Yannakakis and Gavril proved that determining this 

value for general graphs is NP-complete [10]. 

 

Figure 6 Achromatic number of a path of length 4 is 3 

The NP-completeness of the achromatic number problem holds 

also for some special classes of graphs: bipartite graphs [3], com-

plements of bipartite graphs [8], cographs and interval graphs [1] 

and even for trees [7]. For complements of trees, the achromatic 

number can be computed in polynomial time [10]. The achromatic 

number of an n-dimensional hypercube graph is known to be pro-

portional to 2
n

n , but the constant of proportionality is not 

known precisely [9].In this section, we give an approximation 

algorithm to determine the achromatic number of shuffle-

exchange network. 

 

III. AN APPROXIMATION ALGORITHM FOR 

THE ACHROMATIC NUMBER OF SE(N) 

Some of the basic results on achromatic number, which are in the 

literature, are given below. 

Lemma 1 [4] Let Cp denotes a p-cycle. If  p
C n   and 2k  , 

then  p k
C n


 .□ 

Lemma 2[4] If  p
C n  , then 

 1

2

n n
p


 .□ 

Lemma 3 [4] For n > 2 and even, let 
2

2

n
p  . Then  

   1p p
C C n 


  .□ 

Lemma 4 [4] For 3n   and odd, let 
 1

2

n n
p


 . Then 

 p
C n   and  1

1
p

C n


  .□ 

Lemma 5 [4] If 
 1

2

n n
p


 , 3n  , then  p

C n  . For p be-

tween 
 1

2

n n 
 and 

 1

2

n n
,  p

C n   unless n is odd and 

 1
1

2

n n
p


  , in which case  1

1
p

C n


  .□ 

Lemma 6 [2] If C is an n-cycle with achromatic number  C , 

then 

    
 

  
 

2

1

,  if   is  o d d
2

,  if   is  e v e n
2

C C

C

n

C

C

 







 



 






.□ 

 

Theorem 5 [5] Let  1 2
, , ..., 3

k i
l l l l   be positive integers. Then 

there exists positive integers 
1 2 1

', ', ..., '
k

l l l


 such that 

1

1 1

'

k k

i i

i i

l l



 

   and 

 
1 2

...
kl l l

C C C      
1 2 1' ' '

...
kl l l

C C C


   . In particu-

lar, if 
1

k

i

i

l



 = p, then  
1 2

...
kl l l

C C C      p
C , where Ct 

denotes a cycle of length t. □ 

 

Theorem 6 [5] Let 
1 2

3 ...
k

l l l     be positive integers and let 

1

k

i

i

l p



 . If 
2

p
k  , then  

1 2
...

kl l l
C C C    =  p

C .□ 

Theorem 7 [5] Let G be a regular graph of degree m. If G has a 

complete n - colouring, then 
1

( )
n

n V G
m

 


 
 

. 

 

The following is our result on the achromatic number of SE(n). 

Theorem 8 An upper bound for the achromatic number of SE(n) is 

given by  
 

2
1 1 3 .2 1 6

( )
2

n

S E n


  

 .Proof. SE(n) contains 

T = 
1

1

nn

r

r

C

n





 

 

 

  number of n - node necklaces. We know that SE(n) 

is a regular graph of degree 3 except the pendant vertices at the 

beginning and the end and the vertices containing the parallel 
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edges. Then SE(n) has a complete k - colouring satisfying 

1
2

3

nk
k

 


 
 

. That is, 2
3 .2 0

n
k k    which implies 

1 1 4 .3 .2

2

n

k
 

   
2

1 1 3 .2

2

n 
 

. 

 

Thus  
 

2
1 1 3 .2 1 6

( )
2

n

S E n


  

  which completes the 

proof. □ 

We have also derived a lower bound for the achromatic number of 

SE(n), when n is prime. 

Theorem 9    1
( ) 2 4 1

n
S E n


   , when n is prime. 

Proof. When n is prime, the number of n - node necklaces is given 

by T =  
1

1

1
2 2

nn

nr

r

C

n n





  . Let N = nT. Let k be an integer such 

that  
 

2

1
1

2 2

kk
N k

 
   

 

, which implies  
2

1 2k N  .  

Therefore 1 2k N   . In other words, 
1

2 4 1
n

k


   . 

Hence the theorem is proved. □ 

 

From Theorem 8 and Theorem 9, we obtain the following result. 

Theorem 10 There exists an O(1) - approximation algorithm to 

determine the achromatic number of Shuffle-Exchange network 

SE(n), when n is prime. □ 

Conjecture 2 Theorem 10 holds for SE(n), for any n. □ 

 

IV. CONCLUSION 

 

In this paper, we give a new method of drawing Shuffle Exchange 

Network of any dimension. Since the drawing of shuffle exchange 

network is complicated, many of its properties are hard to under-

stand. The new representation which we have introduced helps us 

to study some of its properties.An approximation algorithm has 

been given for achromatic number of hypercubes [9]. In this pa-

per, we have considered this problem for the Shuffle Exchange 

Network of prime dimension. The conjecture mentioned in this 

paper and the problem for deBrujin and torus are under investiga-

tion. 
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