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Abstract - Design of interconnection networks is an important
integral part of the parallel processing or distributed systems.
There are a large number of topological choices for intercon-
nection networks. Among several choices, the Shuffle Ex-
change Network is one of the most popular versatile and effi-
cient topological structures of interconnection networks. In this
paper, we have given a new method of drawing shuffle ex-
change network for any dimension. This has enabled us to in-
vestigate some of the topological properties of shuffle-
exchange network. Also we give an approximation algorithm
for achromatic number of shuffle-exchange network.

Keywords- Interconnection networks, Shuffle Exchange Net-
work, Achromatic Labeling.

l. INTRODUCTION

An interconnection network consists of a set of processors,
each with a local memory, and a set of bidirectional links that
serve for the exchange of data between processors. A conven-
ient representation of an interconnection network is by an undi-
rected (in some cases directed) graph G = (V, E) where each
processor is a vertex in V and two vertices are connected by an
edge if and only if there is a direct (bidirectional for undirected
and unidirectional for directed graphs) communication link
between processors. We will use the term interconnection net-
work and graph interchangeably.

A. The Shuffle Exchange Network

Definition -Let Q, denote an n - dimensional hypercube. The n
dimensional shuffle - exchange network, denoted by SE(n), has
vertex set V = V(Q,), and two vertices X = X3X,...X, and y =
y1Y»...Yn are adjacent if and only if either

(i) x and y differ in precisely the n™ bit, or
(if) x is a left or right cyclic shift of y.

The edge defined by the condition (i) is called an exchange edge,
and (ii) is called a shuffle edge. The condition (ii) means that ei-

ther YiYa...Yn = XoX3... XpX1 OF Y1Y2...Yn = XnX1Xo2. ... Xn—2Xpn 1.

Figure 1 The 8 - node Shuffle Exchange Network

1. NEW REPRESENTATION OF THE SHUFFLE
EXCHANGE NETWORK

Definition-Let X = {2° 2%..., 2" "'} and let P(X) denote the
power set of X. We construct a graph G* with vertex set P(X)
where

(i) Two nodes S and S~ are adjacent if and only if SA S” = {2°}

(@) IfF|S|=1]8"|=k where S={2" 2", .., 2%}and §" =
{2" 2%, .., 2"} then S and S’ are adjacent if and only if
yi = (x; +1) mod n for all 1< i< k. See Figure 2.

O a2 2™
Figure 2 New Drawing of the Shuffle-Exchange Network

Theorem 1 The two definitions of Shuffle-Exchange network
of dimension n are equivalent. In other words, the graph G*
constructed in definition 2 is isomorphic to the graph G given
in definition 1.

Proof. Let G and G* be the graphs defined by definition 1 and
definition 2 respectively. First we associate with each binary
string of length n, a set S in P(X)..

Let u = (uy, Uy, ..., Up), Ui e {0, 1} be an arbitrary string. If u; =

As an example, the 8-node shuffle exchange graph is given in 1 ihen et 2™ < S If u; = 0, then 2™ « S. If u; = O for every i

Figure 1. The shuffle edges are drawn with solid lines while the
exchange edges are drawn with dashed lines [6].For higher di-
mension, it is generally understood that drawing shuffle-exchange

network is quite challenging.

We have redrawn the Shuffle-Exchange network considering the
power set of X = {2° 2., 2" '} as vertices. This has enabled

then S = @ . For example, the string 000 is associated with & ,
001 is associated with {2°}, 010 with {2'}, 100 with {2°}, 011
with {2°, 2'3, 101 with {2° 2%}, 110 with {2*, 2%}, and 111
with {2°, 2%, 22}

Define f :v (G) —» v (G*) by f(u) = f(uy, uy, ..., uy) = S where

us to present a good drawing of the Shuffle-Exchange network for 2" esifui=1,2"eSifu=01<i<n.

any dimension.

Clearly f is well-defined, for,u=v = ui=v;, vi=12,..,n
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= f(u) =f(v)
= S=§

> U=1=u',1<i<k

= u=u.
f is onto: For every S < V(G*), there exists u = (uy, U, ...,
Up)e V(G) such that u; = 1 if 2" < Sand u; = 0 if 2" ¢ S,
1< i< n satisfying f(u) =S.

f preserves adjacency: Let e = uv be an exchange edge in G. To
prove, f(e) = SS' is an exchange edge in G*.

By definition, u and v differ in exactly the n™ bit. That is, if uy,
=0, then v, = 1 and vice versa = 2% Sand 2° ¢ S, that is, if S
={2° 2", 2% .., 2"}, thenS'= {2!, 2% .., 2"}

Hence Sa S'={2°% = SS'is an exchange edge in G*.
Conversely, Let SS' be an exchange edge in G*. In other words,

ifS:{zo,le,zX2 2”},'[henS'={2x1,2XZ

=1=

n—Xxy

=u =
H*Xz

n—xq

This implies u

=v the rest of u and v are zero with u, =1 and v, =0.

n-x, !
Hence u and v differ in exactly the n™ bit.
= uv is an exchange edge in G.

Let e = uv be a shuffle edge in G. Then u = (U, Uy, ..., Upg) iS @
left (or a right) cyclic shift of v = (v, vy, ..., Vi1), that is, vovy
wVna = Uglg..Upalp = Vi = UG + 1) mod n- FOI €VErY U; = 1,
0<i=<n-1, there exists x; such that S = {2 2., 2"} and

f(u) = S. Since Vi = U + 1) mod n, there exists yy, yo, ..., yi such that
Vi xi + 1) mod n for all 1<i<k and

f(v)=S'= { 2% ,27%
Hence f(e) = f(uv) = f(u)f(v) = SS' is a shuffle edge in G*

Conversely, let SS' be a shuffle edge in G*. That is, if S =
27 } , then S':{zyl,zy2 2“} such that y; = (% +

1) mod n for all 1<i<k . This means y; is moved one step
forward from the position of x; and if x; = n - 1, then y; = 0.
There exists u, v e G such that u is a left cyclic shift of v.
Hence uv is a shuffle edge in G.

Thus f preserves adjacency. O

Remark 1- We draw this graph excluding the loops and parallel
edges so that the graph is simple. See Figure 3.
Theorem 2 Let G be the shuffle-exchange network SE(n). Then

1]

n

n

n

3x2" -3 if

\
IV (6)|=2"and cyfl xnz,
[%] L ]

{
\
\E(G)\:J
\
{

3x2" -2 otherwise

Proof: Obviously |v (G )| = 2". Degree of each vertex is 3. Hence
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SE(6), SE(10), SE(14), etc which satisfy the condition
e I "Crog } S contain a pair of parallel edges in
AN lL n J "

the middle row of vertices. Hence removing a parallel edge reduc-
es the number of edges by one. Hence the result follows. o

Figure 3 The 4-dimensional Shuffle Exchange Network.

Dotted lines represent deleted loops and parallel edge

1] il

_ W ] -

Figure 4 Shuffle-Exchange Network of dimension 4

Definition- The removal of the exchange edges partitions the
graph into a set of connected components called necklaces. Each
necklace is a ring of nodes connected by shuffle edges. Figure 4
shows shuffle exchange network SE(4). Figure 5 shows the neck-
laces of SE(4) after removing all the exchange edges. The nodes
0010, 0100, 1000 and 0001 form a 4-node necklace.

o L] il Y

C O

Figure 5 The necklaces of SE(4)

Theorem 3 The diameter of SE(n) is equal to 2n -1.

there are 3. 2" edges. Since the new drawing of SE(n) does not Proof. The longest path between any two vertices of SE(n) is the

contain loops and parallel edges, by removing the loops, the num-
ber of edges becomes 3. 2" - 2. In particular, the graphs SE(4),

path between the pendant vertices at the beginning and the end.
Hence diam(SE(n)) =2n-1. o
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Conjecture 1 SE(n), n > 4, does not contain a Hamiltonian path. | amma 1 [4] Let C, denotes a p-cycle. If ;(c,)=n and k =2,
O

Theorem 4 The number of n - node necklaces in SE(n) isthen 2(Cpu)zn.0

| n(n-1)
[ . Lemma 2[4] Ifz(cp):n,then p=
N 2

.a

2
n
Proof. The new drawing of SE(n) shows that the number of verti- Lemma 3 [4] For n > 2 and even, let =" Then

ces are divided into n + 1 partitions each containing "c_, 2(¢,)=7(C,u)=n0
| "c |

. . . C
_ v -1
r=0,1,2,...,n vertices. Each partition contains |L - J number of Lemma 4 [4] For n>3 and odd, let p- n(n-1) " Then
2
n - node nelcklac?s. Thus the number of n - node necklaces in (C,)=n and , (Cpu)=n-1.0
.M he

SE(n)is ¥ | —=| .0 n(n-1)

e Lemma 5 [4] If p = , n>3,then z(c )=n.Forp be-
In Figure 5, there are three 4 - node necklaces.

n(n-1) (n+1)n .
) . tween and v z2(C,)=n unless n is odd and

A. The Achromatic Labeling 2 2 P
Graph labeling enjoys many practical applications as well as theo- n(n-1) ) )
retical challenges. Besides the classical types of problems, differ- p = +1, in which case » (Cp)=n-1.0

ent limitations can also be set on the graph, or on the way a colour . . .
is assigned, or even on the colour itself. Scheduling, Register allo- Leémma 6 [2] If C is an n-cycle with achromatic number 7 (c),

cation in compilers, Bandwidth allocation, and pattern matching [ (C)(z(c)-1)

are some of the applications of graph colouring. | ——————— if z(C) is odd
then n > J 22 .0

Definition-The achromatic number of a graph G, denoted by I (x(c))

z (G), is the greatest number of colours in a vertex colouring {T if 7 (C) iseven

such that for each pair of colours, there is at least one edge whose
endpoints have those colours. Such a colouring is called a com-

plete colouring. More precisely, the achromatic number for aTheorem 5 [B]Let 1.1, I (1, = 3) be positive integers. Then

graph G = (V, E) is the largest integer m such that there is a parti- there  exists  positive integers 1 *1,"...1,,* such that
tion of V into disjoint independent sets (Vy,...,Vy) such that for «- K
each pair of distinct sets V;, V;, Vi U V; is not an independent set >_ i "= > |; and
in G.The achromatic number of a path of length 4, » (P,) = 3. See '-* i=t

Figure 6. Yannakakis and Gavril proved that determining this » (C, v C, v..uC, ) < z(C .vC .u..uC, .). In particu-

value for general graphs is NP-complete [10]. B

lar, if 371, =p,then »(c, vc, v..uc, )< z(c,), where C

— + =
1 2 3 1 denotes a cycle of length t. o
Figure 6 Achromatic number of a path of length 4 is 3 Theorem 6 [5] Let 3<1 <1, <..<1_ be positive integers and let

k
The NP-completeness of the achromatic number problem holds 3" I, = p . If k < \/E ythen (¢, vc, v..uc, )=x(c,).0
also for some special classes of graphs: bipartite graphs [3], com- =1 2
plements of bipartite graphs [8], cographs and interval graphs [1] Theorem 7 [5] Let G be a regular graph of degree m. If G has a
and even for trees [7]. For complements of trees, the achromatic . Mn-
number can be computed in polynomial time [10]. The achromatic cOmplete n - colouring, then (
number of an n-dimensional hypercube graph is known to be pro-

portional to n2" , but the constant of proportionality is not The following is our result on the achromatic number of SE(n).
known precisely [9].In this section, we give an approximation Theorem 8 An upper bound for the achromatic number of SE(n) is

algorithm to determine the achromatic number of shuffle- -
exchange network. . L+ f1+(3:277 -16)
given by 4 (Se(n)) <

ﬂ)n£|V(G)|.

.Proof. SE(n) contains
2

. AN APPROXIMATION ALGORITHM FOR -1 ne

|
THE ACHROMATIC NUMBER OF SE(N) T=73 | —=| number of n - node necklaces. We know that SE(n)

L
Some of the basic results on achromatic number, which are in the is a regular graph of degree 3 except the pendant vertices at the
literature, are given below. beginning and the end and the vertices containing the parallel
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edges. Then SE(n) has a complete k - colouring satisfying[9] Y. Roichman, "On the achromatic number of hypercubes”, Journal of
Combinatorial Theory, Series B 79 (2), pp. 177 - 182, 2000.

‘F k- 1-; k<2". That is, k>-k-3.2"<o0 which implies [10] M. Yannakakis, F. Gavril, "Edge dominating sets in graphs", SIAM Jour-
3

nal on Applied Mathematics 38, pp. 364 - 372, 1980.
L \Vi+432" L1+ \1+3.2"7?
< , < 5 .

1+ ,’1+(3.2“*2 —16)
<

2

which completes the

Thus 4 (SE(n))

proof. O
We have also derived a lower bound for the achromatic number of
SE(n), when n is prime.

Theorem 9  (SE(n)) > (\/2"*1 - 4)71 , when n is prime.

Proof. When n is prime, the number of n - node necklaces is given

n-1n
by T=3 ¢ 1 (2" —2). Let N = nT. Let k be an integer such

n n

r=1

that N < (k +1)[§j< %

, which implies (k +1)" > 2N .
Therefore k> -1++/2N . In other words, k>+2""-4 1.
Hence the theorem is proved. o

From Theorem 8 and Theorem 9, we obtain the following result.
Theorem 10 There exists an O(1) - approximation algorithm to
determine the achromatic number of Shuffle-Exchange network
SE(n), when n is prime. O

Conjecture 2 Theorem 10 holds for SE(n), for any n. o

V. CONCLUSION

In this paper, we give a new method of drawing Shuffle Exchange
Network of any dimension. Since the drawing of shuffle exchange
network is complicated, many of its properties are hard to under-
stand. The new representation which we have introduced helps us
to study some of its properties.An approximation algorithm has
been given for achromatic number of hypercubes [9]. In this pa-
per, we have considered this problem for the Shuffle Exchange
Network of prime dimension. The conjecture mentioned in this
paper and the problem for deBrujin and torus are under investiga-
tion.
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