

Devanshu, Kapil Page 38

Title

A study of Regression Testing and their techniques

Devanshu Sharma, Kapil Sharma

C.C.S University, India

Abstract:

Regression testing is an expensive, but important process. Unfortunately, there may be

insufficient resources to allow for the re-execution of all test cases during regression testing.

Regression testing is usually performed by running some, or all, of the test cases created to test

modifications in previous versions of the software. Many techniques have been reported on how

to select regression tests so that the number of test cases does not grow too large as the software

evolves.

Keywords: Regression Testing, Test case prioritization, Techniques

Introduction:

It is one of the most critical activities of software development and maintenance. Whenever

software is modified, a set of tests are run and the comparison of new outputs is done with the

older ones to avoid unwanted changes. If new output and old output match it implies the

modifications made in one part of the software didn’t affect the remaining software It is not

appropriate to re-execute every test case for a program if changes occur [1].Regression testing

must be conducted to confirm that recent program changes have not adversely affected existing

features and new tests must be conducted to test new features. Testers might rerun all test cases

generated at earlier stages to ensure that the program behaves as expected. However, as a

program evolves the regression test set grows larger, old tests are rarely discarded, and the

expense of regression testing grows. Repeating all previous test cases in regression testing after

each minor software revision or patch is often impossible due to the pressure of time and budget

Constraints. On the other hand, for software revalidation, arbitrarily omitting test cases used in

regression testing is risky. In this paper, we investigate methods to select small subsets of

effective fault-revealing regression test cases to revalidate software.

Many techniques have been reported in the literature on how to select regression tests for

program revalidation. The goal of some studies [1, 3, 13] is to select every test case on which the

new and the old programs produce different outputs, but ignore the coverage of these tests in the

modified program. In general, however, this is a difficult, sometimes undesirables, and problem

Others [5, 8, 10, 15, 18,] place an emphasis on selecting existing test cases to cover modified

Devanshu, Kapil Page 39

program components and those may be affected by the modifications, i.e., they use coverage

information to guide test selection. They are not concerned with finding test cases on which the

original and the modified programs differ. Consequently, these techniques may fail to select

existing tests that expose faults in the modified program. They may also include test cases that

do not distinguish the new program from the old for re-execution. In this paper we defined

different techniques.

Regression test selection

The problems of regression test selection can be solved by prioritizing test cases. Regression test

Prioritization techniques reorder the execution of a test suite in an attempt to ensure that defects

are revealed earlier in the test execution phase [11].

Regression Test Selection Techniques

A variety of regression test selection techniques have been described in the research literature.

Rothermeland Harrold [ZO] describes several families of techniques; we consider three such

families, along with two additional approaches often used in practice. We here describe these

families and approaches, and give a representative example of each - we utilize these

representative examples in our experimentation.

Minimization Techniques

These techniques attempt to select minimal sets of tests from T that yield coverage of modified

or affected portions of P. One such technique requires that every program statement added to or

modified for P‘ be executed (if possible) by at least one test in T.

Safe Techniques

These techniques select, under certain conditions, every test in T that can expose one or more

faults in PI. One such technique selects every test in T that, when executed on P, exercised at

least one statement that has been deleted from P, or at least one statement that is new in or

modified for P‘.

Devanshu, Kapil Page 40

 Dataflow-Coverage-Based Techniques

These techniques select tests that exercise data interactions that have been affected by

modifications One such technique selects every test in T that, when executed on P, exercised at

least one definition use pair that has been deleted from P’, or at least one definition-use pair that

has been modified for P’.

Ad Hoc / Random Techniques

When time constraints prohibit the use of a retest-all approach, but no test selection tool is

available, developer soften select tests based on “hunches”, or loose associations of tests with

functionality. One simple technique randomly selects a predetermined number of tests from T.

Retest-All Technique

This technique reuses all existing tests. To test P’, the technique “selects” all tests in T. [17]

Genetic Algorithm

GA is a powerful search and optimization algorithm, which are based on the theory of natural

evolution. In GA, each solution for the problem is called a chromosome and consists of a linear

list of codes. The GA sets up a group of magi nary lives having a string of codes for a

chromosome on the computer. The GA evolves the group of imaginary lives (referred to as

population), and gets and almost optimum solution for the problem. The GA uses three basic

operators to evolve the population: selection, crossover, and mutation. Genetic algorithm was

developed by John Holland-University of Michigan (1970.s) to provide efficient techniques for

optimization and machine learning applications through application of the principles of

evolutionary biology to computer science. It uses a directed search algorithms based on the

mechanics of biological evolution such as inheritance, mutation, natural selection, and

recombination (or crossover). It is a heuristic method that uses the idea of .survival of the fittest.

In the genetic algorithm, the problem to be solved is represented by a list of parameters which

can be used to drive an evaluation procedure, called chromosomes or genomes. Chromosomes

are typically represented as simple strings of data and instructions. In the first step of the

algorithm, such chromosomes are generated randomly or heuristically to form an initial pool of

possible solutions called first generation pool. In each generation, each organism (or individual)

is valuated, and a value of goodness or fitness is returned by a fitness function. In the next step, a

second generation pool of organisms is generated, by using any or all of the genetic operators:

Devanshu, Kapil Page 41

selection, crossover (or recombination), and mutation. Pair of organisms is selected for to survive

based on elements of the initial generation which have better fitness. In other words, the

organisms that have relatively higher fitness than other organisms in the generation are selected

to survive. Some of the well-defined organism selection methods are roulette wheel selection and

tournament selection. After selection, the crossover (or recombination) operation is performed on

the selected chromosomes, with some probability of crossover (Pc)-typically between 0.6 and

1.0.Crossover results in two new child chromosomes, which are added to the second generation

pool. The crossover operation is done by simply swapping a portion of the underlying data

structure of the chromosomes of the parents. This process is repeated with different parent

organisms until there are an appropriate number of candidate solutions in the second generation

pool. In the mutation step, the new child organism’s chromosome is randomly mutated by

randomly altering bits in the chromosome data structure. The aim of these is to produce a second

generation pool of chromosomes that is both different from the initial generation and hence have

better fitness, since only the best organisms from the first generation are selected for surviving.

The same process is applied for the second, third, generations until an organism is produced

which gives a solution that is "good enough". The algorithm starts with an initial set of random

solutions called the population. Each individual in the population, known as chromosome,

represents a particular solution of the problem. Each chromosome is assigned a fitness value

depending on how good its solution to the problem is. After fitness allotment, the natural

selection is executed and the ‘survival of the fittest chromosome’ can prepare to breed for the

next generation. A new population is then generated by means of genetic operations: cross-over

and mutation. This evolution process is iterated until a near-optimal solution is obtained or a

given number of generations is reached.

Fitness function:

In order to identify the best individual during the evolutionary process, a function needs to assign

a degree of fitness to each chromosome in every generation. So in order to determine whether the

assumed region of the input image is a face or not, The fitness value of the possible face region is

computed by means of similarity.

Selection:

Selection operator is a process in which chromosomes are selected into a mating pool according

to their fitness function. Good chromosomes that contribute their gene-inherited knowledge to

breed for the next generation are chosen.

Devanshu, Kapil Page 42

Cross-over:

This operator works on a pair of chromosomes and produces two offspring by combining the

partial features of two chromosomes. Here we will have to learn single point cross-over, two

point cross-over and uniform crossover operators.

Mutation:
This operator alters genes with a very low probability. The components of the genetic algorithm

explained above can also be summarized as below [16].

Conclusion:

Regression testing is the process of retesting the modified parts of the software and ensuring that

no new errors have been introduced into previously tested code. In addition to validating added

functionality, regression testing compares the behavior of a new version to the old version to

check that no faults are introduced. When the outputs produced by two versions are different, it

implies faults have been introduced into the system. Steps are then taken for the removal of these

faults.

Regression test selection techniques reduce the cost of regression testing by selecting an

appropriate subset of the existing test suite based on information about the program, modified

version and test suite. Test suite minimization technique lower costs by reducing a test suite to a

minimal subset that maintains equivalent coverage of the original test suite with respect to a

particular test adequacy criterion.

Devanshu, Kapil Page 43

References:

[1] W. Eric Wong, J. R. Horgan, Saul London and Hira Agrawal ,“A Study of Effective

Regression Testing in Practice”,8
th

International Symposium on Software Reliability

Engineering,pp.264-274,_Albuquerque, NM ,1997.

[2] Zengkai Ma and Jianjun Zhao, “Test Case Prioritization Basedon Analysis of Program

Structure”, 15th Asia-Pacific Software Engineering Conference, pp.471-478, Beijing, 2008

[3] Walid S. Abd El-hamid, Sherif S. El-etriby, and Mohiy M.Hadhoud “A General Regression

Test Selection Technique”,World Academy of Science, Engineering and Technology,2010.

[4] Gregg Rothermel, Roland H. Untch and Mary Jean Harrold,“Prioritizing Test Cases For

Regression Testing”, IEEETransaction on Software Engineering, Vol. 27, pp.929-948, 2001.

[5] Walid Said Abd El-Hamid, Sherif Said El-etriby and Mohily Mohammed Hadhoud,

“Regression Test Selection Technique for Multi-Programming Language”, 7th International

Conference on Informatics and Systems (INFOS), pp.1-5, Cairo, 2010.

[6] Bing Jiang, Yongmin Mu and Zhihua Zhang, “Research of Optimization Algorithm for Path-

Based Regression TestingSuit”,2nd International Workshop on Education Technology and

Computer Science,Vol.-2,pp.303-306,Wuhan, 2010.

[7] Linda Badri, Mourad Badri and Daniel St-Yves, “Supporting Predictive Change Impact

Analysis: A Control Call Graph Based Technique”, 12th Asia-Pacific Software Engineering

conference,pp.9, 2005.

[8] Yuming Zhou, Baowen Xu, Jianjun Zhao and Hongji Yang,“ICBMC: An Improved Cohesion

Measure For Classes”,Proceedings of the International Conference on Software Maintenance,

pp.44-53 , 2002.

[9]Edward B. Allen and TaghiM. Khoshgoftaar, “Measuring Coupling and Cohesion: An

Information-Theory Approach”,6
th

International Software Metrics Symposium, pp.119-127, Boca

Raton, FL , Aug 2002.

[10] Gregg Rothermel and Mary Jean Harrold, “Analyzing Regression Test Selection

Techniques”, IEEE Transaction on Software Engineering, Vol. 22, pp.529-551,Aug1996.

[11] Michael Ruth and ShengruTu,“A Safe Regression Test Selection Technique for Web

Services”,2nd International

Conference on Internet and Web Application and Services, pp.47,_Morne ,2007.

[12] Khin Haymr Saw Hla, Young Sik Choi and Jong Sou Park,“Applying Particle Swarm

Optimization to Prioritizing Test Cases

for Embedded Real Time Software Retesting ”,IEEE 8
th

International Conference on computer

and Information Technology Workshopes, pp.527-532 , 2008.

[13] N Gnanasekaran and Vineet Banga, “Automated Regression Testing Framework ”, NIIT

Technology Ltd., pp.1-19, July02nd,2007.

[14] Lionel C. Briand, Jie Feng and Yvan Labiche, “Using Genetic Algorithms and Coupling

Measures to Device Optimal Integration Test Orders”, IEEE Transaction on Software

Engineering,pp.43-50,Ischia,2002.

Devanshu, Kapil Page 44

[15]Gregg Rothermel and Mary Jean Harrold, “Empirical Studies of a Safe Regression Test

Selection Technique”, IEEE Transactions on Software Engineering, Vol. 24, pp.401-419,June

1998.

[16]http://www.talkorigins.org/faqs/genalg/genalg.html

[17] Todd L. Graves et al.,“An Empirical Study of Regression Test Selection Techniques”

Proceedings of the International Conference on Software Engineering, pp.188-197,1998.

[18] Manoj, Proceedings of the National Conference on Advances in Computational

Intelligence,pp.448-451

