
IJITE Vol.02 Issue-01, (January, 2014) ISSN: 2321–1776�

�

International Journal in IT and Engineering

 http://www.ijmr.net� ���

�

PATH FINDING: A* OR DIJKSTRA’S?

*Abhishek Goyal

** Prateek Mogha

 ***Rishabh Luthra

****Ms. Neeti Sangwan

ABSTRACT

It is well known that computing shortest paths over a network is an important task in

many network and transportation related analyses. Choosing an adequate algorithm

from the numerous algorithms reported in the literature is a critical step in many

applications involving real road networks. In a recent study, a set of two shortest path

algorithms that run fastest on real road networks has been identified. These two

algorithms are: 1) the A* algorithm, 2) the Dijkstra’s algorithm. As a sequel to that

study, this paper reviews and summarizes these two algorithms, and demonstrates the

data structures and procedures related to the algorithms.

Keywords - A* algorithm, Dijkstra’s Algorithm, Heuristic Function, Geographic

Information System, Transportation.

* Student, Dept. of Information Technology, Maharaja Surajmal Institute of

Technology, C-4 Janak Puri, Delhi.

** Student, Dept. of Information Technology, Maharaja Surajmal Institute of

Technology, C-4 Janak Puri, Delhi.

*** Student, Dept. of Information Technology, Maharaja Surajmal Institute of

Technology, C-4 Janak Puri, Delhi.

****Assistant Professor, Dept. of Engineering, Maharaja Surajmal Institute of

Technology, C-4 Janak Puri, Delhi.

IJITE Vol.02 Issue-01, (January, 2014) ISSN: 2321–1776�

�

International Journal in IT and Engineering

 http://www.ijmr.net� ���

�

Introduction

With the development of geographic information systems (GIS) technology, network

and transportation analyses within a GIS environment have become a common

practice in many application areas. A key problem in network and transportation

analyses is the computation of shortest paths between different locations on a

network. Sometimes this computation has to be done in real time. For the sake of

illustration, let us have a look at a situation in which a place has been hit with natural

disaster. Now many persons may got stuck at different places but they have to be

rescued anyhow. So, the main problem that rescue team face is that how they(rescuer)

approach them i.e. which path they should opt from numerous available paths. Hence,

the fastest route can only be determined in real time. In some cases the fastest route

has to be determined in a few seconds in order to ensure the safety of a stuck

people. Moreover, when large real road networks are involved in an application, the

determination of shortest paths on a large network can be computationally very

intensive. Because many applications involve real road networks and because the

computation of a fastest route (shortest path) requires an answer in real time, a natural

question to ask is: Which shortest path algorithm runs fastest on real road

networks? As there are many algorithm available to find shortest path so there is no

clear answer. Here we have discussed about two algorithm, A* and Dijkstra’s.

Description of Algorithms

Dijkstra’s algorithm: Before going into details of the pseudo-code of the algorithm it

is important to know how the algorithm works. Dijkstra’s algorithm works by solving

the sub problem k, which compute the shortest path from source to vertices among the

k closest vertices to the source. For the Dijkstra’s algorithm to work it should be

IJITE Vol.02 Issue-01, (January, 2014) ISSN: 2321–1776�

�

International Journal in IT and Engineering

 http://www.ijmr.net� ���

�

directed-weighted graph and the edges should be non -negative. If the edges are

negative then the actual shortest path cannot be obtained.

The algorithm works by keeping the shortest distance of vertex v from the source in

an array, Dist. The shortest distance of the source to itself is zero. Distance for all

other vertices is set to infinity to indicate that those vertices are not yet processed.

After the algorithm finishes the processing of the vertices Dist will have the shortest

distance of vertex from source to every other vertex. Two sets are maintained which

helps in the processing of the algorithm, in first set all the vertices are maintained that

have been processed i.e. for which we have already computed shortest path. And in

second set all other vertices are maintained that have to be processed.

The above algorithm can be explained and understood better using an example. The

example will briefly explain each step that is taken and how Dist is calculated.

Consider the following example:�

Figure 1(a) Step 1

The example is solved as follows:

Initial step

Dist[A]=0 ; the value to the source itself

Dist[B]=infinity, Dist[C]= infinity, Dist[D]= infinity, Dist[E]= infinity; the nodes not

processed yet

IJITE Vol.02 Issue-01, (January, 2014) ISSN: 2321–1776�

�

International Journal in IT and Engineering

 http://www.ijmr.net� ���

�

Step 1

Adj[A]={B,C}; computing the value of the adjacent vertices of the graph

Dist[B]=4;

Dist[C]=2;

Figure 1(b) Step 2

Figure: shortest path to vertices B, C from A

Step 2

Computation from vertex C

Adj[C] = {B, D};

Dist[B] > Dist[C]+ EdgeCost[C,B]

 4 > 1+2 (True)

Therefore, Dist[B]=3;Dist[D]=2;

Figure 1 (c) Step 3

Figure: Shortest path from B, D using C as intermediate vertex

Adj[B]={E};

IJITE Vol.02 Issue-01, (January, 2014) ISSN: 2321–1776�

�

International Journal in IT and Engineering

 http://www.ijmr.net� ���

�

Dist[E]=Dist[B]+EdgeCost[B,E]

=3+3=6;

Figure 1 (d) Step 4

Figure 1 (e) Step 5

Figure 1 Shortest Path using Dijkstra’s Algorithm

Adj[D]={E};

Dist[E]=Dist[D]+EdgeCost[D,E]

=3+3=6

This is same as the initial value that was computed so Dist[E] value is

not changed.

Step 3

Adj[E]=0; means there is no outgoing edges from E

IJITE Vol.02 Issue-01, (January, 2014) ISSN: 2321–1776�

�

International Journal in IT and Engineering

 http://www.ijmr.net� ���

�

And no more vertices, algorithm terminated. Hence the path which follows the

algorithm is ACBE.

A* Algorithm: A* algorithm is a graph search algorithm that finds a path from a

given initial node to a given goal node. It employs a "heuristic estimate" h(x) that

gives an estimate of the best route that goes through that node. It visits the nodes in

order of this heuristic estimate. It follows the approach of best first search. The secret

to its success is that it combines the pieces of information that Dijkstra’s algorithm

uses (favoring vertices that are close to the starting point) and information that Best-

First-Search uses (favoring vertices that are close to the goal). In the standard

terminology used when talking about A*, g(n)represents the exact cost of the path

from the starting point to any vertex n, and h(n) represents the heuristic estimated

cost from vertex n to the goal.

Let’s assume that we have someone who wants to get from point A to point B. Let’s

assume that a wall separates the two points.

Figure 2 (a) Step 1

Initial Step

IJITE Vol.02 Issue-01, (January, 2014) ISSN: 2321–1776�

�

International Journal in IT and Engineering

 http://www.ijmr.net� ���

�

The map has a starting point, an ending point and some obstacles. Green is the

starting point, Red is the ending point and Blue are the obstacles.

Step 1

We start by searching the 8 neighboring nodes of the Starting point.

Figure 2 (b) Step 2

Step 2

We calculate the Heuristics of those neighboring cells. F=G+H.

Figure 2 (c) Step 3

Step 3

We proceed by choosing the nodes that are closer to the ending point than others.

IJITE Vol.02 Issue-01, (January, 2014) ISSN: 2321–1776�

�

International Journal in IT and Engineering

 http://www.ijmr.net� �	�

�

Figure 2 (d) Step 4

Final Result

The Red dots are the path that is chosen.

Figure 2 (e) Step 5

Figure 2 Shortest Path using A* Algorithm

Heuristic Function: A heuristic is a technique that improves the efficiency of search

process, possibly by sacrificing claims of completeness. While the almost perfect

IJITE Vol.02 Issue-01, (January, 2014) ISSN: 2321–1776�

�

International Journal in IT and Engineering

 http://www.ijmr.net� �
�

�

heuristic is significant for theoretical analysis, it is not common to find such a

heuristic in practice. Heuristics play a major role in search strategies because of

exponential nature of the most problems. Heuristics help to reduce the number of

alternatives from an exponential number to a polynomial number. Heuristic search has

been widely used in both deterministic and probabilistic planning. Heuristic functions

generally have different errors in different states. Heuristic functions play a crucial

rule in optimal planning, and the theoretical limitations of algorithms using such

functions are therefore of interest. Much work has focused on finding bounds on the

behavior of heuristic search algorithms, using heuristics with specific attributes.

Figure 2 Flow Diagram of A* and Dijkstra’s

IJITE Vol.02 Issue-01, (January, 2014) ISSN: 2321–1776�

�

International Journal in IT and Engineering

 http://www.ijmr.net� ����

�

Comparison of A* and Dijkstra’s

Both the algorithms find the shortest distance between two nodes. Now, we would try

to implement A star and Dijkstra’s on distributed system and compare them on

running time and try and show that A star is a better than Dijkstra’s.

First of all let us cite the major differences between the two.

Note: Dijkstra’s Algorithm is special case of A* Algorithm, when h(n)=0.

Parameters A* Algorithm Dijkstra’s Algorithm

Search Algorithm Best First Search Greedy Best First Search

Time Complexity Time complexity is O(n log

n), n is the no. of nodes.

The time complexity is

O(n2).

Heuristics

Function

Heuristic Function,

f(n)=g(n)+h(n),

g(n) represents the cost of the

path from the starting point

to the vertex n.

h(n) represents the heuristic

estimated cost from vertex n

to the g.

f(n)=g(n),

g(n) represents the cost of the

path from the starting point

to the vertex n.

Dijkstra’s Algorithm is the

worst case of A star

Algorithm.

Table 1 Difference between A* Algorithm and Dijkstra’s Algorithm

We would implement A* and Dijkstra’s on distributed system and compare their

running time, keeping the constraints same as much as possible. So that it can be

proven that A* is better than Dijkstra’s.

IJITE Vol.02 Issue-01, (January, 2014) ISSN: 2321–1776�

�

International Journal in IT and Engineering

 http://www.ijmr.net� ����

�

A* Algorithm Dijkstra’s Algorithm

Figure 3 Case 1 of Comparison between A* Algorithm and Dijkstra’s Algorithm

In this scenario, as you can see, the time taken by A* Algorithm to solve the problem

is nearly half the time taken by Dijkstra’s Algorithm to solve the same problem.

IJITE Vol.02 Issue-01, (January, 2014) ISSN: 2321–1776�

�

International Journal in IT and Engineering

 http://www.ijmr.net� ����

�

We are going to illustrate another example.

A* Algorithm Dijkstra’s Algorithm

Figure 4 Case 2 of Comparison between A* Algorithm and Dijkstra’s Algorithm

 COMPARISION IN TIME (ms)

A* ALGORITHM DIJKSTRA’S ALGORITHM

CASE 1 67 CASE 1 146

CASE 2 102 CASE 2 129

IJITE Vol.02 Issue-01, (January, 2014) ISSN: 2321–1776�

�

International Journal in IT and Engineering

 http://www.ijmr.net� ����

�

COMPARISION IN PATH LENGTH (NODES)

A* ALGORITHM DIJKSTRA’S ALGORITHM

CASE 1 55 CASE 1 55

CASE 2 55 CASE 2 55

Table 2

As it can be seen, the lengths of paths do not vary in both the cases, but the time

varies largely. This implies that, though both the algorithms provide the shortest path

of equal lengths, the Dijkstra’s Algorithm scans more part of the map than the A*

Algorithm does. Hence in these two cases and some others, A* Algorithm is better

than the Dijkstra’s Algorithm.

Advantages and Disadvantages

A* is faster as compare to Dijkstra’s algorithm because it uses Best First Search

whereas Dijkstra’s uses Greedy Best First Search.

Dijkstra’s is Simple as compare to A*.

The major disadvantage of Dijkstra’s algorithm is the fact that it does a blind search

there by consuming a lot of time waste of necessary resources.

Another disadvantage is that it cannot handle negative edges. This leads to acyclic

graphs and most often cannot obtain the right shortest path.

Dijkstra's algorithm has an order of n2 so it is efficient enough to use for relatively

large problems.

The major disadvantage of the algorithm is the fact that it does a blind search there by

consuming a lot of time waste of necessary resources.

IJITE Vol.02 Issue-01, (January, 2014) ISSN: 2321–1776�

�

International Journal in IT and Engineering

 http://www.ijmr.net� ����

�

Conclusion

Dijkstra's is essentially the same as A*, except there is no heuristic (H is always 0).

Because it has no heuristic, it searches by expanding out equally in every direction,

but A* scan the area only in the direction of destination. As you might imagine,

because of this Dijkstra's usually ends up exploring a much larger area before the

target is found. This generally makes it slower than A*. But both have their

importance of its own, for example A* is mostly used when we know both the source

and destination and Dijkstra’s is used when we don't know where our target

destination is. Say you have a resource-gathering unit that needs to go get some

resources of some kind. It may know where several resource areas are, but it wants to

go to the closest one. Here, Dijkstra's is better than A* because we don't know which

one is closest. Our only alternative is to repeatedly use A* to find the distance to each

one, and then choose that path. There are probably countless similar situations where

we know the kind of location we might be searching for, want to find the closest one,

but not know where it is or which one might be closest. So, A* is better when we

know both starting point and destination point. A* is both complete (finds a path if

one exists) and optimal (always finds the shortest path) if you use an Admissible

heuristic function. If your function is not admissible off - all bets are off.

REFERENCES

[1] Moshe Sniedovich, Dijkstra's Algorithm revisited, Department of

Mathematics and Statistics ,The University of Melbourne, 2006

[2] E. W. Dijkstra. A note on two problems in connexion with graph[J],

Numerische Mathematic, 1959

IJITE Vol.02 Issue-01, (January, 2014) ISSN: 2321–1776�

�

International Journal in IT and Engineering

 http://www.ijmr.net� ����

�

[3] Leo Willyanto Santoso, Alexander Setiawan, Andre K. Prajogo, Performance

Analysis of Dijkstra and A*, Informatics Department, Faculty of Industrial

Engineering, Petra Christian University, 2005

[4] Liang Dai, Fast Shortest Path Algorithm for Road Network and

Implementation, Carleton University School of Computer Science, 2012

[5] Xiang Liu, Daoxiong Gong, A comparative study of Astar algorithms for

search and rescue in perfect maze, International Conference on Electric

Information and Control Engineering, 2011

[6] Woo-Jin Seo, Seung-Ho Ok, Jin-Ho Ahn, Sungho Kang, Byungin Moon,

Study on the hazardous blocked synthetic value and the optimization

route of hazardous material transportation network based on A-star

algorithm, International Joint Conference on INC, IMS and IDC, 2012

[7] Neha Choubey, Bhupesh Kumar, Analysis of Working of Dijkstra and A* to

Obtain Optimal Path, Department of Computer Science and Engg. CSIT,

2013

