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Abstract-This paper describes three different fundamental 
mathematical programming approaches that are relevant to 
data mining.  They are: Feature Selection, Clustering and 
Robust Representation. This paper comprises of two clustering 
algorithms such as K-mean algorithm and K-median 
algorithms. Clustering is illustrated by the unsupervised 
learning of patterns and clusters that may exist in a given 
databases and useful tool for Knowledge Discovery in 
Database (KDD). The results of k-median algorithm are used 
to collecting the blood cancer patient from a medical database. 
K-mean clustering is a data mining/machine learning algorithm 
used to cluster observations into groups of related observations 
without any prior knowledge of those relationships. The k-
mean algorithm is one of the simplest clustering techniques 
and it is commonly used in medical imaging, biometrics and 
related fields. 
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I. INTRODUCTION 
 

Mathematical program programming, that is optimization 
subject to constraints, in a broad discipline that has been 
applied to a great variety of theoretical and applied problems 
such as operations research [6], network problems [5], games 
theory and economics [9], engineering mechanics [7] and more 
recently to machine learning [ 6]. In this paper we describe 
three recent mathematical-programming-based developments 
that are relevant to data mining; feature selection [10], 
clustering [11] and robust representation [8]. We note at the 
outset that we do not plan to survey either the fields of data 
mining of mathematical programming, but rather highlight 
some recent and highly effective applications of the latter to 
the former. We will, however, point out other approaches that 
are mostly not based on mathematical programming.  
 
 Basic Description 
 
The fundamental nonlinear programming problem consists of 
minimizing an objective function subject to inequality and 
equality constraints and is typically written as follows min f(x) 
subject to g(x) _< 0, h(x)=0, where x is an n-dimensional 
vector of real variables, f is a real- valued function of x, g and 
h are finite dimensional vector functions of x. if all the 
functions f, g and h are linear then the problem simplifies to a 
linear program [ 4,] which is the classical problem of 
mathematical programming. If x is two-dimensional, a linear 
program can be thought of as the problem of finding a lowest 
point (not necessarily unique) on a tilted plane surrounded by a 
piecewise-linear fence. Extremely efficient algorithms exist for 
the solution of linear programs. Thus reducing a problem to a 

single or finite sequence of linear programs is tantamount to 
solving the problem.Another reason for emphasizing 
mathematical programming in this work is the very broad 
applicability of the optimization- under-constraints paradigm; a 
great variety of problems from many fields can be formulated 
and effectively solved as mathematical programs. According to 
the great eighteenth century mathematician Leonhard Euler: 
“Nothing happens in the universe that does not have a sense of 
either certain maximum or minimum” [8,p 1]. From the point 
of view of applicability to large-scale data mining problems, 
the proposed algorithms employ either linear programming 
which is polynomial-time-solvable [9], or convex quadratic 
programming (section 4) which is also polynomial-time-
solvable. 
 
Extremely fast linear and quadratic programming codes [4] that 
are capable of solving linear program with millions of 
variables[8, 4] and very large quadratic programs, make the 
proposed algorithms easily scalable and effective for solving a 
wide range of problems. One limitation however is that the 
problem features must be real numbers or easily mapped into 
real numbers. If some of the features are discrete and can be 
represented as integers, then the techniques of integer 
programming [5, 4] can be employed. Integer programming 
approaches have been applied for example to clustering 
problems [6, 1], but will not be described here, principally 
because the combinatorial approach is fundamentally different 
that the analytical approach of optimization with real variables. 
Stochastic optimization methods based on simulated annealing 
have also been used in problems of inductive concept 
learning.The problems considered in this paper are: 
 

II. FEATURE SELECTION 
 

A. Introduction  
 

A feature selection algorithm can be seen as the combination of 
a search technique for proposing new feature subsets, along 
with an evaluation measure which scores the different feature 
subsets. The simplest algorithm is to test each possible subset 
of features finding the one which minimises the error rate. This 
is an exhaustive search of the space, and is computationally 
intractable for all but the smallest of feature sets. 
 
B. Subset selection 

 
Subset selection evaluates a subset of features as a group for 
suitability. Subset selection algorithms can be broken up into 
Wrappers, Filters and Embedded. Wrappers use a search 
algorithm to search through the space of possible features and 
evaluate each subset by running a model on the subset. 
Wrappers can be computationally expensive and have a risk of 
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over fitting to the model. Filters are similar to Wrappers in the 
search approach, but instead of evaluating against a model, a 
simpler filter is evaluated. Embedded techniques are embedded 
in and specific to a model.The choice of evaluation metric 
heavily influences the algorithm, and it is these evaluation 
metrics which distinguish between the three main categories of 
feature selection algorithms: wrappers, filters and embedded 
methods.     The feature selection problem treated is that of 
discriminating between two finite point sets in n-dimensional 
feature space by a separating plane that utilizes as few of the 
features as possible. The problem is formulated as a 
mathematical program with a parametric objective function 
and linear constraints [10]. A step function that appears in the 
objective function is approximated by a concave exponential 
on the nonnegative real line instead of the conventional 
sigmoid function of neural networks. This leads to a very fast 
iterative linear-programming-based algorithm for solving the 
problem that terminates in a finite number of steps. On the 
Wisconsin prognosis blood cancer (WPBC) [5] database by 
35.4% while reducing problem feature from 32 to 4. 
 

III. CLUSTERING 
 

A. Definition of clustering 
 

The process of grouping a set of physical of abstract objects 
into classes of similar objects is called clustering. A cluster is a 
collection of data objects that are similar to one another within 
the same cluster and are dissimilar to the objects in other 
clusters. A data can objects can be treated collectively as one 
group and so may be considered as a form of data compression.    
The clustering problem considered in this paper in that of 
assigning m points in the n-dimensional real space R n to d 
clusters. The problem is formulated as that of determining k 
centers in R n such that the sum of distances of each point to 
the nearest center is minimized. Once the cluster centers are 
determined by a training set, a new point is assigned the cluster 
with the nearest cluster center; if a polyhedral distance (such as 
the 1-norm distance) is used, the problem can be formulated as 
that of minimizing a piecewise-linear concave function on a 
polyhedral set which is shown to be equivalent to a bilinear 
program: minimizing the product of two linear functions on a 
set determined by satisfying a system of linear inequalities 
[11]. Although a bilinear program is a no convex optimization 
problem (I.e. minimizing a function that is not valley-like), a 
fast finite k-median algorithm consisting of solving few linear 
programs in closed form leads to a stationary point. 
Computational testing of this algorithm as a KDD tool [11] has 
been quite encouraging; on the Wisconsin prognosis blood 
cancer database (WPBC), distinct and clinically important 
survival curves were discovered from the data base by the k-
Median Algorithm, whereas the traditional k-Mean Algorithm 
[6], which uses the square of the 2-norm distance, thus 
emphasizing outliers, failed to obtain such distinct survival 
curves for the same database. On four other publicly available 
databases each of the k-mean algorithms did best on two of the 
databases. 
B. k-means clustering 

 
K-Means clustering is a method of vector quantization, 
originally from signal processing, that is popular for cluster 
analysis in data mining. K-Means clustering aims to partition n 

observations into k clusters in which each observation belongs 
to the cluster with the nearest mean, serving as a prototype of 
the cluster. This results in a partitioning of the data space 
into voronoi cells.The problem is computationally difficult 
however, there are efficient heuristic algorithms that are 
commonly employed and converge quickly to a local optimum. 
These are usually similar to the expectation-maximization 
algorithm for mixtures of Gaussian via an iterative refinement 
approach employed by both algorithms. Additionally, they 
both use cluster centers to model the data; however, k-means 
clustering tends to find clusters of comparable spatial extent, 
while the expectation-maximization mechanism allows clusters 
to have different shapes. 
 
Description 
 
Given a set of observations (x1, x2, …, xn), where each 
observation is a d-dimensional real vector, k-means clustering 
aims to partition the n observations into k sets 
(k ≤ n) S = {S1, S2, …, Sk} so as to minimize the within-cluster 
sum of squares (WCSS): 

 
Where  μi is the mean of points in Si. 
 
C. Standard algorithm 

 
The most common algorithm uses an iterative refinement 
technique. Due to its ubiquity it is often called the k-means 
algorithm; it is also referred to as Lloyds’ algorithm, 
particularly in the computer science community.Given an 
initial set of k means m1

(1),…,mk
(1) (see below), the algorithm 

proceeds by alternating between two steps: [7] 

 
Assignment step: 
 
Assign each observation to the cluster whose mean yields the 
least within-cluster sum of squares (WCSS). Since the sum of 
squares is the squared Euclidean distance, this is intuitively the 
"nearest" mean. (Mathematically, this means partitioning the 
observations according to the voronoi diagram generated by 
the means). 

 
Where each  is assigned to exactly one , even if it could 
be is assigned to two or more of them. 
 
Mean algorithm step:   
 
Calculate the new means to be the centroids of the observations 
in the new clusters. 

 
Since the arithmetic mean is a least-squares estimator, this also 
minimizes the within-cluster sum of squares (WCSS) 
objective. 
 Lloyd's -means algorithm has polynomial smoothed 

running time. It is shown that  for arbitrary set of  points 
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in , if each point is independently perturbed by a 
normal distribution with mean  and variance , then 
the expected running time of -means algorithm is 

bounded by , which is 

a polynomial in , ,  and . 
 Better bounds are proved for simple cases. For example, 

showed that the running time of -means algorithm is 

bounded by  for  points in an integer 

lattice . 
 

 Variations 
 
  K-Median clustering uses the median in each dimension 

instead of the mean, and this way minimizes  norm 
(Taxicab geometry). 

 K-Medoids (also: Partitioning around Medoids, PAM) 
uses the medoid instead of the mean, and this way 
minimizes the sum of distances for arbitrary distance 
functions. 

 Fuzzy C-Means Clustering is a soft version of K-means, 
where each data point has a fuzzy degree of belonging to 
each cluster. 

 Gaussian mixture models trained with Expectation-
maximization algorithm (EM algorithm) maintains 
probabilistic assignments to clusters, instead of 
deterministic assignments, and multivariate Gaussian 
distributions instead of means. 

 Several methods have been proposed to choose better 
starting clusters. One recent proposal is  k-means++ 

 The filtering algorithm uses k d-trees to speed up each k-
means step. 

 Some methods attempt to speed up each k-means step 
using corsets or the triangle inequality. 

 Escape local optima by swapping points between clusters. 
 The Spherical k-means clustering algorithm is suitable for 

directional data. 
 The Murkowski deals with irrelevant features by assigning 

cluster specific weights to each feature 
 

IV.   K-MEDIAN ALGORITHM 
 

 K-medians clustering are a cluster analysis algorithm. It is a 
variation of k-means clustering where instead of calculating 
the mean for each cluster to determine its centroid, one instead 
calculates the median. This has the effect of minimizing error 
over all clusters with respect to the1-norm distance metric, as 
opposed to the square of the 2-norm distance metric. This 
relates directly to the k-median problem which is the problem 
of finding k centers such that the clusters formed by them are 
the most compact. Formally, given a set of data points x, the k 
centers ci are  
 
A. Medians and medoids 

 
As the median is computed in each single dimension, the 
individual attributes will come from the data set, making this 
algorithm more reliable for discrete or even binary data sets. 

The means will however not necessarily be instances from the 
data set, as the attributes may come from different instances. 
This algorithm is often confused with the k-medoids 
Algorithm. However, a medoid has to be an actual instance 
from the dataset, while for the (multivariate) median this only 
holds for single attribute values. The actual median can thus be 
a combination of multiple instances. Given the 

vectors ,  and , the median obviously 

is  and does not exist in the original data, and thus 
cannot be a medoid. 
 
B. Initialization methods 

 
Commonly used initialization methods are Forgy and Random 
Partition.  The Forgy method randomly chooses k observations 
from the data set and uses these as the initial means. The 
Random Partition method first randomly assigns a cluster to 
each observation and then proceeds to the update step, thus 
computing the initial mean to be the centroid of the cluster's 
randomly assigned points. The Forgy method tends to spread 
the initial means out, while Random Partition places all of 
them close to the center of the data set. According to Hamerly 
et al., the Random Partition method is generally preferable for 
algorithms such as the k-harmonic means and fuzzy k-means. 
 
C. Robust Representation 

 
This problem deals with modeling a system of relations within 
a database in a manner that preserves, to the extent possible, 
the validity of the representation when the data on which the 
model is based changes. This problem is closely related to the 
generalization problem of machine learning of how to train a 
system on a given training set so as to improve generalization 
on a new unseen testing set [6]. We use here a simple linear 
model [7] and will show that if a sufficiently small error is 
purposely tolerated in construction the model, then for a broad 
class of perturbations the model will be a more accurate 
representation than one obtained by a conventional zero error 
tolerance. A simple example demonstrates this result. 
 

V. DATA MINING AND KDD PROCESS 
 

Data mining is a detailed process of analyzing large amounts of 
data and picking out the relevant information. It refers to 
extracting or mining knowledge from large amounts of data. 
Data Mining is the fundamental stage inside the process of 
extraction of useful and comprehensible knowledge, previously 
unknown, from large quantities of data stored in different 
formats, with the objective of improving the decision of 
companies, organizations where the data can be collected. 
However data mining and overall process known as 
Knowledge Discovery from Databases (KDD) is usually an 
expensive process, especially in the stages of business 
objectives elicitation, data mining objectives elicitation, and 
data preparation. This is especially the case each time data 
mining is applied to a blood bank. 
 

VI. CONCLUSION 
 

A number of ideas based on mathematical programming have 
been proposed for the solution of the fundamental problems of 
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feature selection, clustering and robust representation. 
Examples of applications of these ideas have been given to 
show their effectiveness. We discuss now some issues 
associated with these approaches.All the methods here used 
variables. Even though the class of problems falling in this 
category is quite broad, this requirement imposes a restriction 
on the type of problems that can be handled. Nevertheless the 
proposed methods can be applied to problems with discrete 
variables of one is willing to use the techniques of integer and 
mixed integer programming [5] which are more difficult. In 
fact one proposed algorithms, the k-Median algorithm, whose 
finite termination is established for problems with real 
variables, is directly applicable with no change to problems 
with ordered discrete variables such as integers. How well it 
performs on such problems would be an interesting problem to 
examine.   We conclude with the hope that the problems solved 
demonstrate the theoretical and computational potential of 
mathematical programming as a versatile and effective tool for 
solving important problems in data mining and knowledge 
discovery in database 
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