

 IJCSEC- International Journal of Computer Science and Engineering Communications. Vol.2, Issue 5, Sep 2014, ISSN: 2347–8586

500

The Journey to SDN: A Peek into the History of

Programmable Networks

M.Bindhu
1
, Ramesh.G.P

2
,

 Research Scholar, St.Peter’s University, Chennai, India
1
,

Professor ,Department of ECE, St.Peter’s University, Chennai, India
2
,

deepbind@gmail.com
1
 ,rameshgp@yahoo.com

2

Abstract: This paper proposes to do a survey and study of the state-of-art programmable networks with a focus on

SDN. It will present a historic outlook of programmable networks from early concepts to very recent progress. This is

followed by a study of SDN architecture and the OpenFlow standard. Currently available options for implementation

and testing of SDN-based protocols and services are also discussed. SDN applications for current and future are also

examined.

Index Terms-Software-Defined Networking, Data plane, Control plane, Mininet, Virtualization.

1.Introduction: A typical computer network comprises of a huge number of network devices such as routers,

switches and various types of intermediary devises such as a firewall which will also manipulate traffic though it is

not for packet forwarding purposes. Many complex protocols are implemented on these intermediary devises.

Network events and applications are managed by network administrators by configuring policies. This is done

manually by transforming the high level-policies into low-level configuration commands which will adapt to the

changing network conditions. For achieving this very complex tasks , very limited tools are currently at their

disposals. Because of that, network administration and fine tuning of performance is quite challenging and thus error-

prone .Vertical integration of network devises aggravates the challenges faced by network operators and

administrators. “Internet ossification” is another almost overwhelming challenge encountered by network

practitioners and researchers. Very large deployment base and the fact that now computer network is considered as

one of our society’s essential infrastructure (like power and transportation services), makes it extremely difficult for

the Internet to evolve in terms of the physical infrastructure as well as its protocols and performance. Present and

future Internet applications and services are becoming progressively more complex and demanding. This makes it

crucial that the Internet be able to evolve to address these new challenges. The paper is planned as in Section 2,

begins by saying about Literature Survey. Section 3 illustrates on overview of SDN architecture which describes the

switches and Open Flow protocol. Section 4 and 5 states development tools of SDN implementations, verification

and debugging tools. In Section 6, we talk about several SDN applications in areas such as data centers and optical

networking.

2. Literature Survey Of SDN: SDN is undoubtedly one of the most promising concept which can change the way

networks function, and particularly OpenFlow has been termed as a “radical new idea in networking” [1]. SDN is

proposed to bring in changes ranging from centralized control, simplification of algorithms, network hardware

commoditization, eliminating middle ware, to facilitating the design and deployment of third-party ‘apps’. Though

OpenFlow received considerable industry attention recently only, the concept of programmable networks and

decoupled control logic has been there for many years. Under this section, an overview of early programmable

networking efforts, predecessors to the current SDN paradigm (that laid the foundation for most of the ideas we are

seeing today), is provided.

2.1 DCAN: An initiative that started in the mid 1990s is the Devolved Control of ATM Networks (DCAN) [2]. The

objective of this project was to design and develop necessary infrastructure for scalable control and management of

ATM networks. The hypothesis was that the control and management functions of many devices (ATM switches in

this case) should be decoupled from the devices and assigned to external units dedicated for that purpose. This

mailto:deepbind@gmail.com

 IJCSEC- International Journal of Computer Science and Engineering Communications. Vol.2, Issue 5, Sep 2014, ISSN: 2347–8586

501

basically is the idea behind DNs. DCAN assumes a simple protocol between the manager and the network, which is

similar to what happens today in applications such as OpenFlow.

2.2 Active Networking: Another initiative started in the mid 1990s, the Active Networking [3], [4] suggested the

idea of a network infrastructure that could be programmed for customized services. Two main approaches were being

considered, namely: (i) user programmable switches, with in-band data transfer and out-of-band management

channels; and (ii) capsules, which were fragments of program that could be carried in user messages; which would

then be interpreted and executed by routers.

2.3 Open Signaling: The Open Signaling (OPENSIG) working group started in 1995 as a series of workshops

committed to “making ATM, Internet and mobile networks more open, extensible, and programmable” [5].

According to them a division between the communication hardware and control software was necessary but

challenging to implement. This is mainly because of vertically integrated switches and routers. In addition to that the

closed nature of these switches and routers made rapid deployment of new core proposal was to give access to the

network hardware via open, programmable network interfaces, allowing the employment of new services through a

distributed programming environment.

2.4 4D Project: Started in 2004, this concept proposed to give the “decision” plane a global view of the network,

which is serviced by a “dissemination” and “discovery” plane, for control of a “data” plane for forwarding traffic.

These concepts formed the basics for later works such as NOX [6]. NOX proposed an “operating system for

networks” in the context of an OpenFlow enabled network

2.5 NETCONF: The IETF Network Configuration Working Group suggested NETCONF [7] in 2006, as a

management protocol for updating the configuration of network devices. NETCONF allowed an API to be exposed

for network devices, through which all configuration data could be sent and retrieved. A NETCONF network should

not be considered as fully programmable because any new functionality has to be implemented both at the network

device and the manager level so that proper management can take place. NETCONF is primarily designed to

facilitate the configuration automatic and does not provide direct control of state data.

2.6 Ethane: The immediate predecessor to OpenFlow was the SANE / Ethane project [8], which, in 2006, defined a

new architecture for enterprise networks. Ethane’s focus was on using a centralized controller to manage policy and

security in a network. A notable example is providing identity- based access control. Similar to SDN, Ethane

employed two components: a controller to decide if a packet should be forwarded, and an Ethane switch consisting of

a flow table and a secure channel to the controller. Ethane laid the foundation for what would become Software

Defined Networking. To put Ethane in the context of today’s SDN paradigm, Ethane’s identity-based access control

would likely be implemented as an application on top of an SDN controller such as NOX [6], Maestro [9], Beacon

[10], SNAC [11], Helios [12], etc.

3.SDN Architecture: The Open Networking Foundation (ONF) [13] is a leading organization responsible for

standardization and advancements in SDN. The clients who request for a service, a server which promises to deliver

the service and a forwarding device responsible for carrying out the communication in a network are common

components. Present condition for the customers in network devices comes with preinstalled software from

manufacturer and leave a small pace for customization option for the customers. The huge exploitation base of

internet and its stiffness is referred to as “Internet Ossification” and it is impossible to implement any major changes

to it . The vertical integration of traditional networks that is tight coupling of forwarding plane and control plane,

delay innovation. The SDN architecture introduced plays a vital role in splitting the networking devices into data

plane and control plane. Forwarding packets very fast and efficiently is done by Data plane ,which is not intelligent

but can perform physically carrying data packets from one port to another by rules that are programmed into the

device hardware. Control plane has greater responsibility in deciding the logic to program the data plane. The

communication of two planes as standard protocol over a secure channel is called OpenFlow [13]. Fig 1 shows the

logical organization of SDN. Decoupling control plane from data plane makes control plane programmable which

 IJCSEC- International Journal of Computer Science and Engineering Communications. Vol.2, Issue 5, Sep 2014, ISSN: 2347–8586

502

enables abstraction of network device from application and service layers which in turn acts as virtual entity. It makes

enterprises to gain vendor independent control over network there by simplifying the design, operation and

maintenance. Hence SDN devices can no longer need to store the logic telling what to do when packets arrive;

instead they depend on the controller for the operation. Hence provides flexibility for traffic engineers to develop and

deploy applications like routing and security at one place instead on each and every device thereby reduces the time

involved in adapting to changes in policy of controlling the underlying devices.

Figure1.SDN Architecture

3.1 Data Plane: It is forwarding plane which has flow tables with flow entries and an abstraction layer which can

safely with controller through OpenFlow protocol. The flow entries firstly consists of match fields with packet

header, ingress port and data. Secondly counters to know about statistics of received packet with bytes &duration of

data and finally actions to be taken upon the matching. On the packet arrival at OpenFlow switch, packet headers are

matched with flow tables entries. If matching is found, flow actions take place as needed . If the matches doesn't take

place, action is forwarded to table miss entry in flow table .This action will direct the packet to drop, continue with

next flow table ,forward it to controller for further actions. Several versions of OpenFlow is defined but 1.1 versions

has multiple entries with pipeline method and also uses hybrid switches which are commercial available as it uses for

traditional and SDN networks.

3.2 Control Plane: The logically centralized is in charge of (i) the requirements are translated from the Application

layer down to the Data paths and (ii) providing the Application plane with an abstract ,slicing view of the network.

An SDN Controller has north bound interface agents, Control Logic module, and the interface driver. Applications is

written in Java which can interact with the built-in controller modules via a JAVA API. REST API is used for other

applications which uses different languages and interact with the controller modules. The example of controller

allows the execution of built-in modules that can exchange of with their implementation of the OpenFlow controller

(i.e. Services). On the other side the controller, can communicate with the data plane via the OpenFlow protocol

through the abstraction layer which is present at the data plane hardware.

APP1 APP2 APP3

Northbound API

Application Tier

Control Plane Tier

Networking Operating System

CONTROLLER

Data Plane Tier

Southbound API

Switches1 Switches2 Switches3

 IJCSEC- International Journal of Computer Science and Engineering Communications. Vol.2, Issue 5, Sep 2014, ISSN: 2347–8586

503

4.Development Tools

Mininet :Mininet is a network emulator used to create scalable SDNs via Linux processes. topology, traffic flows,

new services ,protocols ,applications are developed and tested in this environment before developing hardware.

Topology is created with a Python script and the traffic flows are established from a OpenFlow controller.

EstiNet 8.1:This is a recent entrant (not a freeware) , in the field of OpenFlow network simulator and emulator. The

most unique feature is its capability to run controller application program, created by any OpenFlow researcher, on an

EstiNet8.1[36] simulated OpenFlow network without any changes. This is made possible due to the

innovative "kernel-reentering simulation methodology" used by EstiNet. It is advantageous than present Mininet

platform as packet forwarding capability of a switch in Mininet is unpredictable.

Software Switch Platforms: Currently numerous SDN software switches are available to run an SDN test bed also in

developing services over SDN. Table I represents current software switch implementations with language used and

the OpenFlow standard version that supports. Table II says about the native SDN commercial switches available,

with their manufacturer and the version of OpenFlow .

Open vSwitch [34] c/python Openflow 1.0 import on
ASIC

ofsoftswitch13 [36] c/c++ Openflow1.3

Indigo [37] c Openflow1.0 with

ASIC/Ethernet

Pantou/OpenWRT [35] c Wireless router

TABLE I:CURRENT SOFTWARE SWITCH WITH OPENFLOW STD

Controller Platforms :The Table III provided here gives a brief view of the listed controllers. For example the

Beacon controller is java based developed by Stanford cross platform, modular, Java based OpenFlow controller that

supports event-based and threaded operations. The Floodlight [14] Java is by BigSwitch , Java based OpenFlow

controller (supports v1.3), based on the Beacon implementation, that works in physical and virtual OpenFlow

switches. The routing engines produces the forwarding information base (FIB) to the Linux IP tables by the routing

protocols configured (e.g., OSPF, BGP). The RouteFlow extension is presented in [15], which discusses Routing

Control Platforms (RCPs) in the context of OpenFlow/SDN. The controller centric networking model with a

prototype implementation of an autonomous system with BGP routing service.

Controller Source code View

POX[33] Python Nicira,opensource

NOX[6] Python/C++ Nicira,opensource

Trema[30] Ruby/C NEC,Freesource

Beacon[10] JAVA Stanford, event based

Floodlight[14] JAVA Bigswitch,openflow1.3v

Flowvisor [31] C Stanford, special controller

implementations

RouteFlow [32] C++ CPqD, special controller
implementations

TABLE III: CURRENT SDN COMMERCIAL SWITCH WITH OPENFLOW STD

Maker Switches Version

HP 8200zl, 6600, 6200zl,500/3500yl 1.0

IBM RackSwitchG8264 1.0

juniper Junos MX-Seri 1.0

Brocade NetIron CES 2000 1.0

NEC PF5240 PF5820 1.0

TABLE II: MAIN SOFTWARE SWITCH MAKERS WITH OPENFLOW STD

 IJCSEC- International Journal of Computer Science and Engineering Communications. Vol.2, Issue 5, Sep 2014, ISSN: 2347–8586

504

5.DebuggingTools: NICE [16] a testing tool used to help correct bugs in OpenFlow programs via model checking

and executing symbolically. Anteater [17] helps by attempting to check network invariants which exist in the data

plane, for connectivity or consistency. It will also catch errors that result from faulty switch firmware. VeriFlow [18]

goes one point further by proposing a real time verification tool that cites between the controller and the data plane.

OFRewind [19] allows all network events to be recorded at different levels and later produced for granting the

opportunity to localize and troubleshoot the events that are caused by the network difference. The ndb [20]

implements breakpoints and packet back traces for SDN. With software debugger gdb, it can pinpoint events that

lead to error by pausing execution even at a breakpoint also by using a packet back trace, which show the sequence

of forwarding actions seen by that packet. STS [21] is a SDN troubleshooting simulator. which is in python and

works on POX. Under test conditions the simulation of the devices in a given network is done and identifies the set

of inputs that produces a given error.

6. SDN Applications: In networked environments, Software Defined Networking has got a wide range of

applications. By separating the control and data planes, programmable networks facilitate the following i) More

flexibility and customization in the control of the network. ii) Elimination of many middle boxes currently deployed

in the network.iii) Rapid development and deployment of new simplified network services and protocols. Different

environments for which SDN solutions have been already implemented or proposed are discussed below.

6.1 Enterprise Networks: Large networks run by enterprises demand strict security and performance requirements.

Moreover, different enterprise environments will have very diverse needs, characteristics, and user numbers. Campus

networks are a typical example of an enterprise network. In a University network environment, most of the connected

devices are temporary. SDN gains significance while considering management of Enterprise Networks. SDN allows

many functionalities of network middle boxes to be integrated within the network controller. This eliminates the need

for additional network hardware and facilitates rapid scalability and deployment. Some of the prominent examples of

this functionality integration using SDN are: NAT, firewalls, load balancers [22] [23], and network access control

[24].In order to specifically address the issues faced by enterprise networks, OpenFlow network architecture was

designed based on the Ethane [8], platform.

6.2. Data Centers: In recent years, Data centers have grown at an amazing pace both in terms of size and

complexity. Data centers handle huge data volumes. Any disruption in service or delayed service delivery may result

in enormous losses both in economic terms and productivity terms. This can adversely affect millions of people

across globe. Because of this Data centre traffic management and policy enforcement becomes very critical functions.

Though simple traffic management and visibility offered by SDN are useful, it must be prudently balanced with

scalability and performance demands. Curtis et al. [25] suggests that OpenFlow couples central control and absolute

visibility excessively. But in real life scenario only “ most significant” flows need to be managed. This issue may get

resolved through persistent use of practical policies and wild card rules, but it may dent the ability of the controller to

have the right granularity to effectively manage traffic and collect statistics. Their framework, DevoFlow, proposes to

have some modest design modifications to keep flows in the data plane as much as possible while upholding enough

visibility for effective flow management. This is achieved by transferring responsibility of most flows back to the

switches and adding more efficient statistics collection mechanisms. Using this method, “Significant” flows (e.g. high

throughput, long lived) are thus identified and managed by the controller. In a load-balancing simulation, on average,

their solution had 10 - 53 times lesser flow table entries and 10 - 42 times lesser control messages over OpenFlow.

6.3. Optical Networks: By treating data traffic as flows, SDN and OpenFlow networks can support and integrate

multiple network technologies. It then becomes possible for SDN to provide technology independent and unified

control for optical transport networks. This will pave the way for communication between both packet and circuit

switched networks. Optical Transport Working Group (OTWG) formed in 2013 by the Open Network Foundation

(ONF), states that by applying SDN and the OpenFlow standard to optical transport networks the benefits obtained

are: i) Improved control and management flexibility for optical transport network. ii) Allowing deployment of third

party management and control systems.iii) Deployment of new services by leveraging virtualization and SDN

[26].OpenFlow protocol has been used in many attempts and proposals to control both packet switched and circuit

 IJCSEC- International Journal of Computer Science and Engineering Communications. Vol.2, Issue 5, Sep 2014, ISSN: 2347–8586

505

switched networks. In [27] a NetFPGA [28] platform, using the OpenFlow protocol is employed in the proposal of a

packet switching and circuit switched networks architectures based on Wavelength Selective Switching (WSS). A

conceptual illustration of wavelength path control in transparent optical networks, based on OpenFlow is presented in

[29]. Virtual Ethernet interfaces (veths) are introduced in this work. Physical interfaces of an optical node (e.g.

photonic cross connect - PXC) are then mapped to the veths. An SDN controller (e.g. NOX controller) is enabled to

control the optical light paths(e.g., by using OpenFlow protocol). Software Defined Optical Network (SDON)

architecture is introduced in [30] and QoS for optical burst switching in OpenFlow based on SDON is developed.

Results indicate that SDON provides a viable infrastructure to support unified control protocols for optimized

network performance and improved network capacity.

7. Concluding Remarks: This paper, gives an overview of programmable networks. The emerging field of Software

Defined Networking (SDN) is examined and the history of programmable networks, from initial ideas to recent

developments is studied. SDN architecture as well as the OpenFlow [13] standard is illustrated in detail. Recent

developments in SDN implementations and testing platforms are exemplified. Network applications and services that

have been developed based on the SDN paradigm are studied.

References

[1] Thomas A. Limoncelli. Openflow: a radical new idea in networking. Commun. ACM, 55(8):42–47, August 2012.

[2] DevelopedcontrolofATMnetworks.http://www.cl.cam.ac.uk/research/srg/netos/old-projects/dcan/#pub.

[3] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall, andG.J. Minden. A survey of active network

research. IEEE Commun.Mag., 35(1):80–86, 1997.

[4] D.L. Tennenhouse and D.J. Wetherall. Towards an active networkarchitecture. In DARPA Active NEtworks

Conf. and Exposition,Proc., pages 2–15. IEEE, 2002.

[5]. AT Campbell, I Katzela, K Miki, J Vicente -Open signaling for ATM, internet and mobile networks

(OPENSIG'98) ,29(1):97-108, 1999.

[6] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,and S. Shenker. Nox: towards an operating

system for networks. ACM SIGCOMM Computer Commun. Review, 38(3):105–110, 2008.

[7] R. Enns. NETCONF Configuration Protocol. RFC 4741 (Proposed Standard), December 2006. Obsoleted by RFC

6241.

[8].M.Casado,MJ Freedman, J Pettit, J Luo, N McKeown,and S.Shenker Ethane: Taking control of the

enterpriseACM SIGCOMM Computer communication review , Volume 37 Issue 4, 4-12,October 2007

[9] Zheng Cai Alan L. Cox T. S. Eugene Ng,Maestro: A System for Scalable OpenFlow Control, TSEN Maestro -

Technical Report TR10-08, Rice University,2010

[10]. Beacon, https://openflow.stanford.edu/display/Beacon/Home

[11].SNAC-http://archive.openflow.org/wp/downloads

[12].Helios by nec .http://www.nec.com

[13] Open networking foundation https://www.opennetworking.org/about

[14]. Floodlight, An open SDN controllerhttp://floodlight.openflowhub.org/

[15] Christian Esteve Rothenberg, Marcelo Ribeiro Nascimento, Marcos Rogerio Salvador, Carlos Nilton Araujo

Corrˆea, Sidney Cunha de Lucena, and Robert Raszuk. Revisiting routing control platforms with the eyes and

muscles of software-defined networking. In Proc. 1
st
 workshop on Hot topics in software defined networks, HotSDN

’12, pages 13–18, New York, NY, USA, 2012. ACM.

[16] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford. A nice way to test openflow applications. NSDI,

Apr, 2012.

[17] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten Godfrey, and Samuel Talmadge

King. Debugging the data plane with anteater. In Proc. ACM SIGCOMM 2011 conf., SIGCOMM ’11,41(4) pages

290–301, New York, NY, USA, 2011. ACM

[18] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey. Veriflow: verifying network-wide

invariants in real time.ACM SIGCOMM Computer Communication Review , HotSDN ’12, pages 49–54, New York,

NY, USA, 2012.ACM

[19] Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja Feldmann.Ofrewind: enabling record and replay

troubleshooting for networks. In Proc. 2011 USENIX conf. on USENIX annu. technical conf., USENIXATC’11,

pages 29–29, Berkeley, CA, USA, 2011.USENIX Association.

http://scholar.google.co.in/citations?user=rthco5oAAAAJ&hl=en&oi=sra

 IJCSEC- International Journal of Computer Science and Engineering Communications. Vol.2, Issue 5, Sep 2014, ISSN: 2347–8586

506

[20] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazi´eres, and Nick McKeown. Where is the

debugger for my software- defined network? In Proceedings of the first workshop on Hot topics in software defined

networks, HotSDN ’12, pages 55–60, New York, NY, USA, 2012. ACM.

[21]. sdn trouble shooting simulator https://github.com/ucb-sts

[22] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Johari.Plug-n-serve: Load-balancing web traffic

using openflow. ACM SIGCOMM Demo, 2009.

[23]R. Wang, D. Butnariu, and J. Rexford. Openflow-based server load balancing gone wild. In Workshop of

HotICE, volume 11, 2011.

[24] A.K. Nayak, A. Reimers, N. Feamster, and R. Clark. Resonance:Dynamic access control for enterprise networks.

In Proc. 1st ACMworkshop on Research on enterprise networking, 11–18. ACM,2009

[25] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula,Puneet Sharma, and Sujata Banerjee.

Devoflow: scaling flowmanagement for high-performance networks. SIGCOMM ComputCommun. Rev., 41(4):254–

265, August 2011

[26] Optical transport working group otwg. In Open Networking Foundation ONF, 2013.

[27] V. Gudla, S. Das, A. Shastri, G. Parulkar, N. McKeown, L. Kazovsky,and S. Yamashita. Experimental

demonstration of openflow controlof packet and circuit switches. In Optical Fiber Communication(OFC), collocated

National Fiber Optic Engineers Conference, Conference on (OFC/NFOEC), pages 1–3, 2010.

[28] Netfpga platform. http://netfpga.org

[29]A.N. Patel, P.N. Ji, and Ting Wang. Qos-aware optical burst switching in openflow based software-defined

optical networks.n OpticalNetwork Design and Modeling (ONDM), 17th International Conference on, pages 275–

280, 2013.

[30]Tremaopenflowcontrollerframework. https://github.com/trema/trema

[31] R. Sherwood, M. Chan, A. Covington, G. Gibb,M. Flajslik, N. Handigol, T.Y. Huang, P. Kazemian, M.

Kobayashi, J. Naous,Carving research slices out of your production networks withopenflow ACMSIGCOMM

Computer Communication Review, 40(1):129–130, 2010

[32]Marcelo R. Nascimento, Christian E. Rothenberg, Marcos R. Salvador,Carlos N. A. Correa, Sidney C. de Lucena,

and Maur ˆ ´ıcio F. Magalhaes. ˜Virtual routers as a service: the routeflow approach leveraging SDNIn Proceedings

of the 6th International Conferenceon Future Internet Technologies, CFI ’11, pages 34–37, New York, NY,USA,

2011. ACM.

[33] Pox. http://www.noxrepo.org/pox/about-pox/.

[34]Open vswitch and ovs-controller. http://openvswitch.org/.

[35] Pantou: Openflow 1.0 for openwrt. http://www.openflow.org/wk/index.php/ Open- Flow 1.0 for OpenWRT.

[36] Ofsoftswitch13 - cpqd. https://github.com/CPqD/ofsoftswitch13.

[37] Indigo: Open source openflow switches. http://www.openflowhub.org/display/Indigo/.

[38] "EstiNet OpenFlow Network Simulator and Emulator" has been published in the IEEE Communications

Magazine. September 2013

