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Abstract - In this paper, presents optimized mix column 

architecture to get less area and delay than the existing mix 

column. Because the proposed mix column architecture is 

reduced using Xtime unit. In the existing architecture, we 

are used complex mix-column in masked AES architecture. 

It consists of 8 multipliers and 11 adders. It consumes more 

area and power. In the proposed architecture, a novel mix-

column is introduced to reduce the area and power than the 

existing method. The proposed mix-column consists of only 

12 adders and 4 Xtime circuit. Instead of normal multiplier 

in the MixColumns, we are using Xtime unit to reduce the 

circuit complexity. The proposed 128bits AES Scheme 

provides high secure and less area. It is used for ATM, Net 

banking, Satellite Communication, Military applications. 

. 
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I. INTRODUCTION 

This AES standard specifies the Rijndael algorithm, a 

symmetric block cipher that can process data blocks of 128 

bits, using cipher keys with lengths of 128, 196, and 256 

bits. Rijndael was designed to handle additional block sizes 

and key lengths; however they are not adopted usually. 

Throughout the remainder of this standard, the algorithm 

specified here in will be referred to as “the AES algorithm” 

[1]. The algorithm may be used with the three different key 

lengths indicated above, and therefore these different 

“flavours” may be referred to as “AES-128”, “AES-192”, 

and “AES-256”. This standard may be used by Federal 

departments and agencies when an agency determines that 

sensitive (unclassified) information requires cryptographic 

protection. Other FIPS-approved cryptographic algorithms 

may be used in addition to, or in lieu of, this standard. 

Federal agencies or departments that use cryptographic 

devices for protecting classified information can use those 

devices for protecting sensitive (unclassified) information 

in lieu of this standard [2]. In addition, this standard may be 

adopted and used by non-Federal Government 

organizations. 
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Such use is encouraged when it provides the desired security 

for commercial and private organizations. The algorithm 

specified in this standard may be implemented in software, 

firmware, hardware, or any combination thereof. The 

specific implementation may depend on several factors such 

as the application, the environment, the technology used, etc 

[4]. In advanced encryption standard a plain text is 

converted into cipher text. Cipher stands for a Series of 

transformations that converts a plaintext to cipher text using 

the Cipher Key. The Advanced Encryption Standard (AES) 

specifies a FIPS-approved cryptographic algorithm that can 

be used to protect electronic data. The (AES) algorithm is a 

symmetric block cipher that can encrypt (encipher) and 

decrypt (decipher) information. Encryption converts data to 

an unintelligible form called cipher text; decrypting the 

cipher text converts the data back into its original form, 

called plaintext. The AES algorithm is capable of using 

cryptographic keys of 128, 192, and 256 bits to encrypt and 

decrypt data in blocks of 128 bits [3]. 

 

Table.1: AES Algorithm 

AES keys Key 

Length 

Block size No of 

rounds 

AES-128 4 4 10 

AES-192 6 4 12 

AES-256 8 4 14 

 

 The AES algorithm takes the Cipher Key, K, and 

performs a Key Expansion routine      to generate a key 

schedule. The Key Expansion generates a total of Nb (Nr + 

1) The algorithm requires an initial set of Nb words, and 

each of the Nr rounds requires Nb words of key data [5]. 

 

 Key Expansion includes the following functions: 

   (1)Root Word (2) Sub Word  (3) Rcon [i/NK] 

The input and output for the AES algorithm each 

consist of sequences of 128 bits (digits with values of 0 or 

1). These sequences will sometimes be referred to as blocks 

and the number of bits they contain will be referred to as 

their length. The Cipher Key for the AES algorithm is a 

sequence of 128, 192 or 256 bits. 
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 Other input, output and Cipher Key lengths are not permitted 

by this standard [6]. The bits within such sequences will be 

numbered starting at zero and ending at one less than the 

sequence length (block length or key length). The number i 

attached to a bit is known as its index and will be in one of 

the ranges 0 <i<128,0<i<192 or 0 < i < 256 depending on 

the block length and key length. 

 
II.   FUNDAMENTALS OF AES 

 

The AES has four steps through which it 

accomplishes data security while transferring any data from 

sender to receiver. The steps are illustrated as follows [7] 

 

2.1 Sub Bytes Transformation: 

The Sub Bytes transformation is a non-linear byte 

substitution that operates independently on each byte of the 

State using a substitution table (S-box). This S-box which is 

invertible is constructed by composing two transformations: 

1. Take the multiplicative inverse in the finite field GF (2^8) 

and the element {00} is mapped to itself. 

2. Apply the following affine transformation the bit, bi is the 

ith bit of the byte, and ci is the ith bit of a byte c with the value 

{63} or {01100011}. Here and elsewhere, a prime on a 

variable indicates that the variable is to be updated with the 

value on the right [10]. 

 

 
  

Fig .1 Sub Bytes applies the s-box to each Byte of the State 

 

 

2.2 Shift Row Transformation: 

In the Shift Rows () transformation, the bytes in the 

last three rows of the State are cyclically shifted over 

different numbers of bytes (offsets). The first row, r = 0, is 

not shifted. the shift value shift(r, Nb) depends on the row 

number, r, as follows ( Nb = 4): shift(1,4); shift(2,4); 

shift(3,4) shift(5.4) This has the effect of moving bytes to 

“lower” positions in the row (i.e., lower values of c in a 

given row), while the “lowest” bytes wrap around into the 

“top” of the row (i.e., higher values of c in a given row) [8]. 

 

 

 

 

 

 
 

Fig.2 Shift Rows Cyclically Shifts The Last Three Rows In 

The State. 

 

2.3 Mix Column Transformation: 

The Mix Columns transformation operates on the 

State column-by-column, treating each column as a four-

term polynomial [12]. The columns are considered as 

polynomials over GF (28) and multiplied modulo x4 + 1 

with a fixed polynomial a(x), given by a(x)={03}x3 + 

{01}x2 + {01}x + {02} 

 
 

Fig. 3 Add round Key Transformation. 
 

 

2.4 Add Round Key: 

In the Add Round Key transformation, a Round Key 

is added to the State by a simple bitwise XOR operation. 

Each Round Key consists of Nb words from the key 

schedule  Those Nb words are each added into the columns 

of the State, such that In the Cipher, the initial Round Key 

addition occurs when round = 0, prior to the first application 

of the round function. The application of the Add Round 

Key transformation to the Nr rounds of the Cipher occurs 

[9]. 
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2.5 Key Expansion:  

 

The AES algorithm takes the Cipher Key, K, and 

performs a Key Expansion routine to generate a key 

schedule. The Key Expansion generates a total of Nb (Nr + 

1) words: the algorithm requires an initial set of Nb words, 

and each of the Nr rounds requires Nb words of key data. 

The resulting key schedule consists of a linear array of 4-

byte words, denoted [wi], with i in the range 0 < i < Nb (Nr 

+ 1) [11]. 

The expansion of the input key into the key schedule 

proceeds according to the pseudo code. Sub Word is a 

function that takes a four-byte input word and applies the S-

box to each of the four bytes to produce an output word. The 

function Rot Word takes a word [a0, a1, a2, a3] as input, 

performs a cyclic permutation, and returns the word [a1, a2, 

a3, a0]. The round constant word array, Rcon[i], contains 

the values given by [xi-1,{00},{00},{00}], with x i-1 being 

powers of x (x is denoted as {02}) in the field GF(2^8), 

(note that i starts at 1, not 0).It can be seen that the first Nk 

words of the expanded key are filled with the Cipher Key 

[13]. Every following word, wi, is equal to the XOR of the 

previous word, wi-1, and the word Nk positions earlier, wi-

Nk. For words in positions that are a multiple of Nk, a 

transformation is applied to wi-1 prior to the XOR, followed 

by an XOR with a round constant, Rcon[i]. This 

transformation consists of a cyclic shift of the bytes in a 

word (Rot Word), followed by the application of a table 

lookup to all four bytes of the word (Sub Word). It is 

important to note that the Key Expansion routine for 256-

bit Cipher Keys (Nk = 8) is slightly different than for 128- 

and 192-bit Cipher Keys. If Nk = 8 and i-4 is a multiple of 

Nk, then Sub Word is applied to wi-1 prior to the XOR [12]. 

 

Similarly while obtaining data at the receiving end, 

AES performs four steps to decrypt data. They are 

mentioned in the following steps, 

 

2.6 Inv Sub Bytes Transformation: 
 

Inv Sub Bytes is the inverse of the byte substitution 

transformation, in which the inverse S box is applied to each 

byte of the State [14]. 

 

2.7 Inv Shift Rows Transformation 

Inv Shift Rows is the inverse of the Shift Rows 

transformation. The bytes in the last three rows of the State 

are cyclically shifted over different numbers of bytes 

(offsets). The first row, r = 0, is not shifted. The bottom three 

rows are cyclically shifted by Nb shift(r, Nb) bytes, where 

the shift value shift(r, Nb) depends on the row number [15], 

 

2.8 Inv Mix Coloumn Transformations: 

 

Inv Mix Columns is the inverse of the Mix Column 

transformation. Inv Mix Columns operates on the State 

column-by-column, treating each column as a four term 

polynomial. The columns are considered as polynomials 

over GF(28) and multiplied modulo x4 + 1 with a fixed  

 

polynomial a-1(x), given by a-1(x) = {0b}x3 + 

{0d}x2 + {09}x + {0e} [16]. 

 

 
 

Fig. 4 Inv Shift Rows Transformation. 
 

 

 
 

Fig. 5 Inv-Mix Columns Transformation 

 
2.9 Inverse Add Round Key Transformation: 

It only involves an application of the XOR operation 

in cipher text. As the XOR operation is performed to the 

output of mix column transformation using, a round Key, 

the original input being send is obtained from the cipher text 

which is a encrypted protected form of the plain input text 

or data [17]. 

 

III. PREVIOUS WORK 

In the existing architecture, complex mix-column in 

masked AES architecture is used. It consists of 8 multipliers 

and 11 adder operators. More number of adders and 

multipliers makes the system more complex and induces 

delay in the system. Complexity in system area too induces 

delay. In the Boolean masking implementation, the 

intermediate value x is concealed by exclusive-O Ring it 

with the random mask m. In the round function of the AES, 

Shift Rows, Mix- Columns, and Add Round Key are linear 

transformations, while Sub Bytes is the only nonlinear 

transformation of the AES. We define the linear 

transformations as Operation; then, the masked Operation 

can be written as Oper(x ⊕ m) = Oper(x) ⊕ Oper(m). 

However, the masked nonlinear transformation Sub Bytes 

has the characteristic as S-box(x ⊕ m) _= S-box(x) ⊕ S-

box (m). In order to mask the nonlinear transformation, a 

new S-box, denoted as S-box_, is recomputed as S-box_ (x 
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⊕ m) = S-box(x) ⊕ m_, where mandm_ are the input and 

output masks of Sub Bytes [18]. 

The existing mix column architecture is given as 

follows. The diagram shows the complexity of the mix 

column architecture. 

 

 

 

Fig. 6 Existing Mix-Column Architecture 

 

Masked Mix Columns can be scaled to adjust the operations 

over GF(24), and it needs to deduce the scaling factor of a 

modular multiplication with the fixed coefficients 0X02 and 

0X03. If S is 1 byte of Mix Columns, it holds that S = map 

(Sh Sl) ∼= Shx + Sl, where S ∈ GF (28) and Sh, Sl ∈ GF 

(24). Therefore, scaling factors 2x + 6 and 2x + 7 of S equal 

to (4Sh + 2Sl x + (fSh + 6Sl) and (5Sh + 2Sl)x + (fSh + 

7Sl).The most optimized design was the work of Standaert 

et al., in which they achieved the best throughput/slices(4.2) 

on FPGA among the existing designs [6]. To our best 

knowledge, there have been no other works on the high-

throughput masked AES on FPGA platforms.  

 

         In order to have a fair comparison, we also implement 

the masked AES design using Oswald’s masked S-box [12] 

with non-pipelined and six stage pipelined unrolled 

structures. The area-optimized design with the pipelined 

structure proposed in this brief achieves 36.2% area 

reduction compared with Oswald’s pipelined design. It 

occupies just 53% larger area than that of the unprotected 

baseline design with the pipelined structure. Furthermore, in 

order to compare the capability of defending DPA attacks 

by the unprotected AES and the masked AES. The 

correlation curve of the first Byte has the highest correlation 

than other values (not equalling to (0x13). Consequently, we 

can obtain all guessed 16 bytes of the last round’s key for 

the unprotected AES and the masked AES [19]. 

 

Optimization for Proposed Architecture Usually, 

throughputs can be significantly improved by inserting 

pipeline registers for latency careless designs. For each 

Masked AES’s round, we insert six-stage pipelines to 

enhance the throughputs. We insert three pipelines to each 

round of the masked AES, called outer three pipelines. The 

pipeline registers are inserted at the output of each 

transformation. We insert three pipelines to the masked S-

box, called inner three pipelines. That the maximum 

pipelined stages for our proposed design are six. In order to 

be compatible with the encryption procedure, we also insert 

six-stage pipelines to the key expansion in order not to affect 

the critical path of the main encryption [20]. 

 

IV. PROPOSED MASKED AES FOR UNROLLED 

STRUCTURE 

 

The proposed AES mix column is changed to get less area 

and delay than the existing mix column. The proposed mix 

column architecture is reduced using X-time circuit. In the 

existing architecture, we used complex mix-column applied 

in masked (AES) architecture [21]. It consists of 8 

multipliers and 11 adders. It consume more area and power. 

In the proposed method, a novel mix-column is introduced 

to reduce the area and power than the existing method. The 

proposed mix-column consists of only 12 adders and 4 X-

time Circuit. Instead of normal multiplier in the mix-

column, we are using X-time unit to reduce the circuit 

complexity.  

The AES specifies FIPS-(Federal information processing 

standard) approved cryptographic algorithm that can be 

used to protect electronic data. The (AES) algorithm is a 

cipher that can encrypt (encipher) and decrypt (decipher) 

information. Encryption converts data to an intangible form 

called cipher text; decrypting the cipher text converts the 

data back into its original form, called plaintext. Using 

multipliers (8nos) and adder operators (11nos), will make 

the AES mix-column system more complex, leading to the 

consumption of more area and delay in execution. Instead, 

adders (12nos) and X-time circuit (4nos) are used. 

 

 
 

 Fig. 7 Proposed complexity reduced mix Column 

Architecture. 

 

V.   RESULTS AND DISCUSSIONS 

 

   The proposed AES with optimized MixColumns is 

designed using Verilog HDL. Simulation is carried out by 

ModelSim6.3c and Synthesize is carried out by Xilinx10.1. 

The results are tabulated as shown in the below table2.  

Proposed Encryption and Decryption offers low area, less 
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delay and low power utilization than the conventional AES 

encryption and Decryption. 

 

  

Table 2. Comparison of different AES techniques. 

 

Different AES 

techniques 

Slices Delay (ns) Power 

(w) 

Encryption with 

complex 

MixColumns 

 

584 

 

3.557 

 

21.345 

Encryption with 

optimized 

MixColumns 

 

474 

 

3.509 

 

18.450 

Decryption with 

complex 

MixColumns 

 

959 

 

4.729 

 

43.683 

Decryption with 

optimized 

MixColumns 

 

865 

 

4.640 

 

12.565 

 

 

VI. CONCLUSION 

 

This paper proposes an area efficient, high speed and low 

power modified AES with Optimized MixColumns. The 

proposed AES provide low area and less power by use of 

Optimized MixColumns. Both the design is implemented on 

Xilinx Virtex4 XC4VLX25 FPGA device. Comparative 

study of the conventional AES with complex Mix Columns 

and proposed AES with optimized MixColumns was done. 

The AES with optimized MixColumns as compared to AES 

with complex Mix Columns shows much more 

improvement in device utilization by way of reducing the 

area, delay and power. The proposed method offers 25% 

area and 10% power reduction than the existing 

architecture.  Hence it is concluded that an efficient method 

for reducing the power dissipation and area is achieved by 

using a AES with optimized Mix Columns. 
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