

IJCSEC-International Journal of Computer Science and Engineering Communications, Vol.2 Issue.3, May 2014. ISSN: 2347–8586

428

Online: www.scientistlink.com

Design of High Speed and Low Area Masked

AES Using Complexity Reduced Mix-Column

Architecture

J.Balamurugan1, Dr.E.Logashanmugam2

Research Scholar1, Professor and Head2,

St.Peter’s University1, Sathyabama University2, TN, India

Abstract - In this paper, presents optimized mix column

architecture to get less area and delay than the existing mix

column. Because the proposed mix column architecture is

reduced using Xtime unit. In the existing architecture, we

are used complex mix-column in masked AES architecture.

It consists of 8 multipliers and 11 adders. It consumes more

area and power. In the proposed architecture, a novel mix-

column is introduced to reduce the area and power than the

existing method. The proposed mix-column consists of only

12 adders and 4 Xtime circuit. Instead of normal multiplier

in the MixColumns, we are using Xtime unit to reduce the

circuit complexity. The proposed 128bits AES Scheme

provides high secure and less area. It is used for ATM, Net

banking, Satellite Communication, Military applications.

.

Keywords: Advanced Encryption Standard, ATM, Mix-
Column Transformation, Multipliers, X-time circuit.

I. INTRODUCTION

This AES standard specifies the Rijndael algorithm, a

symmetric block cipher that can process data blocks of 128

bits, using cipher keys with lengths of 128, 196, and 256

bits. Rijndael was designed to handle additional block sizes

and key lengths; however they are not adopted usually.

Throughout the remainder of this standard, the algorithm

specified here in will be referred to as “the AES algorithm”

[1]. The algorithm may be used with the three different key

lengths indicated above, and therefore these different

“flavours” may be referred to as “AES-128”, “AES-192”,

and “AES-256”. This standard may be used by Federal

departments and agencies when an agency determines that

sensitive (unclassified) information requires cryptographic

protection. Other FIPS-approved cryptographic algorithms

may be used in addition to, or in lieu of, this standard.

Federal agencies or departments that use cryptographic

devices for protecting classified information can use those

devices for protecting sensitive (unclassified) information

in lieu of this standard [2]. In addition, this standard may be

adopted and used by non-Federal Government

organizations.

ICGPC 2014

St.Peter’s University, TN, India.

Such use is encouraged when it provides the desired security

for commercial and private organizations. The algorithm

specified in this standard may be implemented in software,

firmware, hardware, or any combination thereof. The

specific implementation may depend on several factors such

as the application, the environment, the technology used, etc

[4]. In advanced encryption standard a plain text is

converted into cipher text. Cipher stands for a Series of

transformations that converts a plaintext to cipher text using

the Cipher Key. The Advanced Encryption Standard (AES)

specifies a FIPS-approved cryptographic algorithm that can

be used to protect electronic data. The (AES) algorithm is a

symmetric block cipher that can encrypt (encipher) and

decrypt (decipher) information. Encryption converts data to

an unintelligible form called cipher text; decrypting the

cipher text converts the data back into its original form,

called plaintext. The AES algorithm is capable of using

cryptographic keys of 128, 192, and 256 bits to encrypt and

decrypt data in blocks of 128 bits [3].

Table.1: AES Algorithm

AES keys Key

Length

Block size No of

rounds

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

 The AES algorithm takes the Cipher Key, K, and

performs a Key Expansion routine to generate a key

schedule. The Key Expansion generates a total of Nb (Nr +

1) The algorithm requires an initial set of Nb words, and

each of the Nr rounds requires Nb words of key data [5].

 Key Expansion includes the following functions:

 (1)Root Word (2) Sub Word (3) Rcon [i/NK]

The input and output for the AES algorithm each

consist of sequences of 128 bits (digits with values of 0 or

1). These sequences will sometimes be referred to as blocks

and the number of bits they contain will be referred to as

their length. The Cipher Key for the AES algorithm is a

sequence of 128, 192 or 256 bits.

IJCSEC-International Journal of Computer Science and Engineering Communications, Vol.2 Issue.3, May 2014. ISSN: 2347–8586

429

Online: www.scientistlink.com

 Other input, output and Cipher Key lengths are not permitted

by this standard [6]. The bits within such sequences will be

numbered starting at zero and ending at one less than the

sequence length (block length or key length). The number i

attached to a bit is known as its index and will be in one of

the ranges 0 <i<128,0<i<192 or 0 < i < 256 depending on

the block length and key length.

II. FUNDAMENTALS OF AES

The AES has four steps through which it

accomplishes data security while transferring any data from

sender to receiver. The steps are illustrated as follows [7]

2.1 Sub Bytes Transformation:

The Sub Bytes transformation is a non-linear byte

substitution that operates independently on each byte of the

State using a substitution table (S-box). This S-box which is

invertible is constructed by composing two transformations:

1. Take the multiplicative inverse in the finite field GF (2^8)

and the element {00} is mapped to itself.

2. Apply the following affine transformation the bit, bi is the

ith bit of the byte, and ci is the ith bit of a byte c with the value

{63} or {01100011}. Here and elsewhere, a prime on a

variable indicates that the variable is to be updated with the

value on the right [10].

Fig .1 Sub Bytes applies the s-box to each Byte of the State

2.2 Shift Row Transformation:

In the Shift Rows () transformation, the bytes in the

last three rows of the State are cyclically shifted over

different numbers of bytes (offsets). The first row, r = 0, is

not shifted. the shift value shift(r, Nb) depends on the row

number, r, as follows (Nb = 4): shift(1,4); shift(2,4);

shift(3,4) shift(5.4) This has the effect of moving bytes to

“lower” positions in the row (i.e., lower values of c in a

given row), while the “lowest” bytes wrap around into the

“top” of the row (i.e., higher values of c in a given row) [8].

Fig.2 Shift Rows Cyclically Shifts The Last Three Rows In

The State.

2.3 Mix Column Transformation:

The Mix Columns transformation operates on the

State column-by-column, treating each column as a four-

term polynomial [12]. The columns are considered as

polynomials over GF (28) and multiplied modulo x4 + 1

with a fixed polynomial a(x), given by a(x)={03}x3 +

{01}x2 + {01}x + {02}

Fig. 3 Add round Key Transformation.

2.4 Add Round Key:

In the Add Round Key transformation, a Round Key

is added to the State by a simple bitwise XOR operation.

Each Round Key consists of Nb words from the key

schedule Those Nb words are each added into the columns

of the State, such that In the Cipher, the initial Round Key

addition occurs when round = 0, prior to the first application

of the round function. The application of the Add Round

Key transformation to the Nr rounds of the Cipher occurs

[9].

IJCSEC-International Journal of Computer Science and Engineering Communications, Vol.2 Issue.3, May 2014. ISSN: 2347–8586

430

Online: www.scientistlink.com

2.5 Key Expansion:

The AES algorithm takes the Cipher Key, K, and

performs a Key Expansion routine to generate a key

schedule. The Key Expansion generates a total of Nb (Nr +

1) words: the algorithm requires an initial set of Nb words,

and each of the Nr rounds requires Nb words of key data.

The resulting key schedule consists of a linear array of 4-

byte words, denoted [wi], with i in the range 0 < i < Nb (Nr

+ 1) [11].

The expansion of the input key into the key schedule

proceeds according to the pseudo code. Sub Word is a

function that takes a four-byte input word and applies the S-

box to each of the four bytes to produce an output word. The

function Rot Word takes a word [a0, a1, a2, a3] as input,

performs a cyclic permutation, and returns the word [a1, a2,

a3, a0]. The round constant word array, Rcon[i], contains

the values given by [xi-1,{00},{00},{00}], with x i-1 being

powers of x (x is denoted as {02}) in the field GF(2^8),

(note that i starts at 1, not 0).It can be seen that the first Nk

words of the expanded key are filled with the Cipher Key

[13]. Every following word, wi, is equal to the XOR of the

previous word, wi-1, and the word Nk positions earlier, wi-

Nk. For words in positions that are a multiple of Nk, a

transformation is applied to wi-1 prior to the XOR, followed

by an XOR with a round constant, Rcon[i]. This

transformation consists of a cyclic shift of the bytes in a

word (Rot Word), followed by the application of a table

lookup to all four bytes of the word (Sub Word). It is

important to note that the Key Expansion routine for 256-

bit Cipher Keys (Nk = 8) is slightly different than for 128-

and 192-bit Cipher Keys. If Nk = 8 and i-4 is a multiple of

Nk, then Sub Word is applied to wi-1 prior to the XOR [12].

Similarly while obtaining data at the receiving end,

AES performs four steps to decrypt data. They are

mentioned in the following steps,

2.6 Inv Sub Bytes Transformation:

Inv Sub Bytes is the inverse of the byte substitution

transformation, in which the inverse S box is applied to each

byte of the State [14].

2.7 Inv Shift Rows Transformation

Inv Shift Rows is the inverse of the Shift Rows

transformation. The bytes in the last three rows of the State

are cyclically shifted over different numbers of bytes

(offsets). The first row, r = 0, is not shifted. The bottom three

rows are cyclically shifted by Nb shift(r, Nb) bytes, where

the shift value shift(r, Nb) depends on the row number [15],

2.8 Inv Mix Coloumn Transformations:

Inv Mix Columns is the inverse of the Mix Column

transformation. Inv Mix Columns operates on the State

column-by-column, treating each column as a four term

polynomial. The columns are considered as polynomials

over GF(28) and multiplied modulo x4 + 1 with a fixed

polynomial a-1(x), given by a-1(x) = {0b}x3 +

{0d}x2 + {09}x + {0e} [16].

Fig. 4 Inv Shift Rows Transformation.

Fig. 5 Inv-Mix Columns Transformation

2.9 Inverse Add Round Key Transformation:

It only involves an application of the XOR operation

in cipher text. As the XOR operation is performed to the

output of mix column transformation using, a round Key,

the original input being send is obtained from the cipher text

which is a encrypted protected form of the plain input text

or data [17].

III. PREVIOUS WORK

In the existing architecture, complex mix-column in

masked AES architecture is used. It consists of 8 multipliers

and 11 adder operators. More number of adders and

multipliers makes the system more complex and induces

delay in the system. Complexity in system area too induces

delay. In the Boolean masking implementation, the

intermediate value x is concealed by exclusive-O Ring it

with the random mask m. In the round function of the AES,

Shift Rows, Mix- Columns, and Add Round Key are linear

transformations, while Sub Bytes is the only nonlinear

transformation of the AES. We define the linear

transformations as Operation; then, the masked Operation

can be written as Oper(x ⊕ m) = Oper(x) ⊕ Oper(m).

However, the masked nonlinear transformation Sub Bytes

has the characteristic as S-box(x ⊕ m) _= S-box(x) ⊕ S-

box (m). In order to mask the nonlinear transformation, a

new S-box, denoted as S-box_, is recomputed as S-box_ (x

IJCSEC-International Journal of Computer Science and Engineering Communications, Vol.2 Issue.3, May 2014. ISSN: 2347–8586

431

Online: www.scientistlink.com

⊕ m) = S-box(x) ⊕ m_, where mandm_ are the input and

output masks of Sub Bytes [18].

The existing mix column architecture is given as

follows. The diagram shows the complexity of the mix

column architecture.

Fig. 6 Existing Mix-Column Architecture

Masked Mix Columns can be scaled to adjust the operations

over GF(24), and it needs to deduce the scaling factor of a

modular multiplication with the fixed coefficients 0X02 and

0X03. If S is 1 byte of Mix Columns, it holds that S = map

(Sh Sl) ∼= Shx + Sl, where S ∈ GF (28) and Sh, Sl ∈ GF

(24). Therefore, scaling factors 2x + 6 and 2x + 7 of S equal

to (4Sh + 2Sl x + (fSh + 6Sl) and (5Sh + 2Sl)x + (fSh +

7Sl).The most optimized design was the work of Standaert

et al., in which they achieved the best throughput/slices(4.2)

on FPGA among the existing designs [6]. To our best

knowledge, there have been no other works on the high-

throughput masked AES on FPGA platforms.

 In order to have a fair comparison, we also implement

the masked AES design using Oswald’s masked S-box [12]

with non-pipelined and six stage pipelined unrolled

structures. The area-optimized design with the pipelined

structure proposed in this brief achieves 36.2% area

reduction compared with Oswald’s pipelined design. It

occupies just 53% larger area than that of the unprotected

baseline design with the pipelined structure. Furthermore, in

order to compare the capability of defending DPA attacks

by the unprotected AES and the masked AES. The

correlation curve of the first Byte has the highest correlation

than other values (not equalling to (0x13). Consequently, we

can obtain all guessed 16 bytes of the last round’s key for

the unprotected AES and the masked AES [19].

Optimization for Proposed Architecture Usually,

throughputs can be significantly improved by inserting

pipeline registers for latency careless designs. For each

Masked AES’s round, we insert six-stage pipelines to

enhance the throughputs. We insert three pipelines to each

round of the masked AES, called outer three pipelines. The

pipeline registers are inserted at the output of each

transformation. We insert three pipelines to the masked S-

box, called inner three pipelines. That the maximum

pipelined stages for our proposed design are six. In order to

be compatible with the encryption procedure, we also insert

six-stage pipelines to the key expansion in order not to affect

the critical path of the main encryption [20].

IV. PROPOSED MASKED AES FOR UNROLLED

STRUCTURE

The proposed AES mix column is changed to get less area

and delay than the existing mix column. The proposed mix

column architecture is reduced using X-time circuit. In the

existing architecture, we used complex mix-column applied

in masked (AES) architecture [21]. It consists of 8

multipliers and 11 adders. It consume more area and power.

In the proposed method, a novel mix-column is introduced

to reduce the area and power than the existing method. The

proposed mix-column consists of only 12 adders and 4 X-

time Circuit. Instead of normal multiplier in the mix-

column, we are using X-time unit to reduce the circuit

complexity.

The AES specifies FIPS-(Federal information processing

standard) approved cryptographic algorithm that can be

used to protect electronic data. The (AES) algorithm is a

cipher that can encrypt (encipher) and decrypt (decipher)

information. Encryption converts data to an intangible form

called cipher text; decrypting the cipher text converts the

data back into its original form, called plaintext. Using

multipliers (8nos) and adder operators (11nos), will make

the AES mix-column system more complex, leading to the

consumption of more area and delay in execution. Instead,

adders (12nos) and X-time circuit (4nos) are used.

 Fig. 7 Proposed complexity reduced mix Column

Architecture.

V. RESULTS AND DISCUSSIONS

 The proposed AES with optimized MixColumns is

designed using Verilog HDL. Simulation is carried out by

ModelSim6.3c and Synthesize is carried out by Xilinx10.1.

The results are tabulated as shown in the below table2.

Proposed Encryption and Decryption offers low area, less

IJCSEC-International Journal of Computer Science and Engineering Communications, Vol.2 Issue.3, May 2014. ISSN: 2347–8586

432

Online: www.scientistlink.com

delay and low power utilization than the conventional AES

encryption and Decryption.

Table 2. Comparison of different AES techniques.

Different AES

techniques

Slices Delay (ns) Power

(w)

Encryption with

complex

MixColumns

584

3.557

21.345

Encryption with

optimized

MixColumns

474

3.509

18.450

Decryption with

complex

MixColumns

959

4.729

43.683

Decryption with

optimized

MixColumns

865

4.640

12.565

VI. CONCLUSION

This paper proposes an area efficient, high speed and low

power modified AES with Optimized MixColumns. The

proposed AES provide low area and less power by use of

Optimized MixColumns. Both the design is implemented on

Xilinx Virtex4 XC4VLX25 FPGA device. Comparative

study of the conventional AES with complex Mix Columns

and proposed AES with optimized MixColumns was done.

The AES with optimized MixColumns as compared to AES

with complex Mix Columns shows much more

improvement in device utilization by way of reducing the

area, delay and power. The proposed method offers 25%

area and 10% power reduction than the existing

architecture. Hence it is concluded that an efficient method

for reducing the power dissipation and area is achieved by

using a AES with optimized Mix Columns.

REFERENCES

[1] Advanced Encryption Standard (AES), FIPS-197, Nat.

Inst. of Standards and Technol., 2001.

[2] P. Kocher, J. Jaffe, and B. Jun, “Differential power

analysis,” in Proc. CRYPTO, 1999, vol. LNCS 1666, pp.

388–397.

[3] L. Goubin and J. Patarin, “DES and differential power

analysis (the ‘duplication’ method),” in Proc. CHES LNCS,

1999, vol. 1717, pp. 158–172.

[4] S. Messerges, “Securing the AES finalists against power

analysis attacks,” in Proc. FSE LNCS, 2000, vol. 1978, pp.

150–164.

[5] K. Gaj and P. Chodowiec, “Fast implementation and fair

comparison of the final candidates for advanced encryption

standard using field programmable gate arrays,” in Proc.

CT-RSA LNCS, 2001, vol. 2020, pp. 84–99.

[6] F. X. Standaert, G. Rouvroy, J. J. Quisquater, and J. D.

Legat, “Efficient implementation of Rijndael encryption in

reconfigurable hardware: Improvements and design

tradeoffs,” (in German), in Proc. CHES LNCS, 2003, vol.

2779, pp. 334–350.

[7] G. P. Saggese, A.Mazzeo, N. Mazzocca, and A. G.M.

Strollo, “An FPGAbased performance analysis of the

unrolling, tiling, pipelining of the AES algorithm,” in Proc.

FPL LNCS, Aveiro, Portugal, 2003, vol. 2778, pp. 292–302.

[8] M. McLoone and J. V. McCanny, “Rijndael FPGA

implementations utilizing look-up tables,” in Proc. IEEE

Workshop Signal Process. Syst., Antwerp, Belgium, 2001,

pp. 349–360.

[9] V. Rijmen, “Efficient Implementation of the Rijndael S-

Box,” Dept. ESAT., Katholieke Universiteit Leuven,

Leuven, Belgium, 2006. [Online].

Available: http://www.networkdls.com/Articles/sbox.pdf

[10] A. Hodjat and I. Verbauwhede, “A 21.54 Gbits/s fully

pipelined processor on FPGA,” in Proc. IEEE 12th Annu.

Symp. Field-Programm. Custom Comput. Mach., 2004, pp.

308–309.

[11] S. Mangard, N. Pramstaller, and E. Oswald,

“Successfully attacking masked AES hardware

implementations,” in Proc. CHES LNCS, 2005, vol. 3659,

pp. 157–171.

[12] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen,

“A side-channel analysis resistant description of the AES S-

box,” in Proc. FSE LNCS, Setubal, Potugal, 2005, vol.

3557, pp. 413–423.

[13] H. Kim, S. Hong, and J. Lim, “A fast and provably

secure higher-order masking of AES S-box,” in Proc. CHES

LNCS, Nara, Japan, 2011, vol. 6917, pp. 95–107.

IJCSEC-International Journal of Computer Science and Engineering Communications, Vol.2 Issue.3, May 2014. ISSN: 2347–8586

433

Online: www.scientistlink.com

[14] C. Carlet, L. Goubin, E. Prouff, M. Quisquater, and M.

Rivain, “Higherorder masking schemes for S-boxes,” in

Proc. FSE LNCS, 2012, vol. 7549, pp. 366–384.

[15] J. D. Goli´c, “Techniques for random masking in

hardware,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol.

54, no. 2, pp. 291–300, Feb. 2007.

[16] D. Canright and L. Batina, “A very compact ‘perfectly

masked’ S-box for AES,” in Proc. ACNS LNCS, 2008, vol.

5037, pp. 446–459.

[17] S. Mangard, E. Oswald, and T. Popp, Power Analysis

Attacks: Revealing the Secrets of Smart Cards. New York:

Spinger-Verlag, 2007.

[18] Z. Yuan, Y. Wang, J. Li, R. Li, and W. Zhao, “FPGA

based optimization for masked AES implementation,” in

Proc. IEEE 54th Int. MWSCAS, Seoul, Korea, 2011, pp.1–

4.

[19] M. Alam, S. Ghosh, M. J. Mohan, D. Mukhopadhyay,

D. R. Chowdhury, and I. S. Gupta, “Effect of glitches

against masked AES S-box implementation and

countermeasure,” IET Inf. Security, vol. 3, no. 1, pp. 34–44,

Feb. 2009.

[20] E. Trichina, T. Korkishko, and K. H. Lee, “Small size,

low power, side channel-immune AES coprocessor: Design

and synthesis results,” in Proc. AES LNCS, 2005, vol. 3373,

pp. 113–127.

[21] S. K. Mathew, F. Sheikh, M. Kounavis, S. Gueron, A.

Agarwal, S. K. Hsu, H. Kaul, M. A. Anders, and R. K.

Krishnamurthy, “53 Gbps native GF(24)2 composite-field

AES-encrypt/decrypt accelerator for content-protection in

45 nm high-performance m

