

IJCSEC-International Journal of Computer Science and Engineering Communications, Vol.2 Issue.3, May 2014. ISSN: 2347–8586

362 Online: www.scientistlink.com

An Efficient 4-Parallel Feed Forward FFT

Architecture by using Multipath Delay Commutator
D.Nirmala1, D.Linett Sophia2

 PG Scholar1, Assistant Professor2,

 St.Peter’s University, TN, India

Abstract –Fast Fourier Transform (FFT) is widely used in the

field of digital signal processing (DSP) such as filtering spectral

analysis, etc, to compute discrete fourier transform. The

appearance of radix-22 which had been a milestone in the

design of pipelined FFT hardware architectures was later

extended to radix-2K.This project presents a new approach to

develop parallel pipelined 16 point radix-22. Feed forward

(MDC) FFT architectures along with data shuffling.

Furthermore, decimation in frequency (DIF) decomposition has

been used. The power and area consumption can be reduced in

4-parallel FFT architecture. As a result, the proposed radix-22

feed forward architectures not only offer an attractive solution

for current applications, but also open up new research line on

feed forward structures. The output samples are obtained, to a

desired order to implement on XILINXSPARTAN-3E FPGA.

Index Terms — Fast Fourier Transform (FFT), multipath

delay commutator (MDC), pipelined architecture, radix-2k,

FPGA.

1. INTRODUCTION

 The present day real time applications demand, the FFT

to be calculated at very high throughput rates, These high

performance requirements appear in applications such as

millimeter Wave wireless local area network , wireless personal

area network systems and real time video streaming services in

short range indoor environments. The FFT/IFFT processor has

a high hardware complexity in the OFDM modulation of high

rate WPAN systems. One OFDM symbol in the IEEE 802.11ad

standards consists of a length of 512 subcarriers. Therefore,

FFT processor conducts the FFT computation with 512-point

arithmetic and should provide a high throughput rate of at least

2.115 GS/s [1]. The radix of the algorithm greatly influences

the architecture of the FFT processor and the complexity of the

implementation. A small radix is desirable because it results in

a simple butterfly. Nevertheless, a high radix reduces the

number of twiddle factor multiplications. The radix 2k

algorithms simultaneously achieve a simple butterfly and a

reduced number of twiddle factor multiplications.

ICGPC 2014

St.Peter’s University, TN, India.

The radix-2 algorithm is a well-known simple algorithm for

FFT processors, but it requires many complex Multipliers.

Recently various radix 2k FFT algorithms and architectures

have been studied in order to reduce the number of complex

multipliers.in this brief, a reconfigurable FFT architecture to

compute 512-point FFT using radix-2k algorithm with the high-

speed is proposed. The key ideas for achieving high date

throughput, reduced hardware complexity are described .The

power consumption and hardware cost can be saved in our

processor by using the higher radix FFT algorithm and less

memory and complex multipliers.

2. RADIX -2K ALGORITHM

The N-point DFT is formulated as







1

0

1,...1,0,)()(
N

n

nk

N NkWnxkX (1)

Where the twiddle factors is defined as N

nk

nk

N eW

2


 .The n

denotes the time index and the k denotes the frequency index.

The radix 2k algorithm can be derived by integrating twiddle

factor decomposition through a divide and conquer approach

[2].

2.1 Radix -22 Algorithm

Consider the first two steps of decomposition in radix-2 DIF

FFT together. Applying a 3-dimensional linear index map as

follows

}1
4

~01,0,{42

}1
4

~01,0,{
42

321321

321321





N
kkkkkkk

N
nnnnn

N
n

N
n

(2)

The DFT has the form of

IJCSEC-International Journal of Computer Science and Engineering Communications, Vol.2 Issue.3, May 2014. ISSN: 2347–8586

363 Online: www.scientistlink.com




  



1
4

0

1

0

1

0

321321

3 2 1

)
42

()42(

N

n n n

nk

NWnn
N

n
N

xkkkX




 





1
4

0

1

0

)42)(
4

(

32

23 2

32132
1)}

4
({

N

n n

kkknn
N

N

k

N Wnn
N

B (3)

Where the first butterfly structure has the form of

)
24

()1()
4

()
4

(323232

2

11
N

nn
N

xnn
N

xnn
N

B
kk

N  (4)

Decomposing the composite twiddle factor, it can be expressed

in Eq.(5).

33213212
32132

4

)2()2(
)42)(

4
(

)(
kn

N

kkn

N

kkn
kkknn

N

N WWjW




 (5)

Substituting the Eq.(5) into Eq.(3) and expanding the

summation with regard to index
2n ,we have a set of 4 DFTs

of length
4

N .









1
4

0 4

)2(

3
4

321

3

3321321])([)42(

N

n

kn

N

kkn

N

kk

N WWnHkkkX (6)

Where a secondary butterfly structure)(3
4

21 nH
kk

N
 is expressed

as

)
4

()()1()()(3

2

3

2

3
4

112121
N

nBjnBnH
k

N

kkk

N

kk

N  (7)

After these two columns, full multiplications are used to

apply the decomposed twiddle factor
)2(213 kkn

NW


in

Eq.(6).Applying this cascade decomposition recursively to the

remaining DFTs of length 4N in Eq.(6), the complete radix 22

FFT algorithm is obtained. Equation (7) represents the first two

columns of butterflies with only trivial multiplication of (-j)

which can be implemented using only real-imaginary swapping

and sign inversion. The radix-22 algorithm is characterized

according to the merit that it has the same multiplicative

complexity and as the radix-4 algorithm, but still retains simple

structures of the radix-2 butterfly.

3. RADIX-22 DIF-FFT

After these two stages, full multipliers are required to compute

the product of decomposed twiddle factors. The complete

radix-22 algorithm can be derived by applying recursively.Fig.1

shows the flow graph of an N = 16 point FFT decomposed

according to decimation in frequency (DIF).

The numbers at the inputs and outputs of the graph represent

the index of input and output samples, respectively. The

advantage of the algorithm is that it has the same multiplicative

complexity as radix-4 algorithms, but still retains the radix-2

butterfly structures. We can observe that, only every other stage

of the flow graph has non-trivial multiplications. The –j notion

represents the trivial multiplication, which involves only real-

imaginary swapping and sign inversion [3].

Fig 1: 16 Point radix22 DIF-FFT architecture

3.1 FEEDFORWARD ARCHITECTURE

Fig 2: Pipelined Data Flow graph (DFG) of a 8-point DIF FFT

as a pre-processing step for folding

Fig 3.: Folded circuit between Node A and Node B

IJCSEC-International Journal of Computer Science and Engineering Communications, Vol.2 Issue.3, May 2014. ISSN: 2347–8586

364 Online: www.scientistlink.com

We derive the feed forward architecture using the same 8-point

radix-2 DIT FFT example in Fig 3.

A = (φ, φ, φ, φ, A0, A1, A2, A3)

B = (B2, B3, φ, φ, φ, φ, B0, B1)

C = (C1, C2, C3, φ, φ, φ, φ, C0)

The control complexity of the derived circuit is high. Four

different signals are needed to control the multiplexers. A better

register allocation is found such that the number of multiplexers

is reduced in the final architecture. The more optimized register

allocation for the same lifetime analysis chart is shown in

Fig.10. Similarly, we can apply lifetime analysis and register

allocation techniques for the variables x0, ..., x7 and z0, ..., z7,

inputs to the DFG and the outputs from nodes B0,B1,B2,B3

respectively[4]. We can observe that the derived architecture is

the same as R2MDC architecture. Similarly, the R2SDF

architecture can be derived by minimizing the registers on all

the variables at once. The linear lifetime chart for these

variables is shown in Fig 3.

3.3 4-PARALLEL RADIX-22 FEED FORWARD

ARCHITECTURE

The feed forward architectures, also known as multi-path delay

commutator (MDC) do not have feedback loops and each stage

passes the processed data to the next stage. These architectures

can also process several samples in parallel. In current real-time

applications, the FFT has to be calculated at very high

throughput rates, even in the range of Giga samples per second.

Fig 4: Proposed 4-parallel (Architecture 2) for the computation

of 16-point radix-2 DIF FFT

The Radix-2k was presented for the SDF FFT as an

improvement on radix-2 and radix-4. Next, radix-23 and radix-

24, which enable certain complex multipliers to be simplified,

were also presented for the SDF FFT. An explanation of radix-

2k SDF architectures can be found in. Finally, the current need

for high throughput has been met by the MDF, which includes

multiple interconnected SDF paths in parallel. However, radix-

2 had not been considered for feed forward architectures until

the first radix-22 feed forward FFT architectures were proposed.

 The paper shows that radix-2 can be used for any number of

parallel samples which is a power of two. Accordingly, radix-22

FFT architectures for 2, 4, and 8 parallel samples are presented.

These architectures are shown to be more hardware-efficient

than previous feed forward and parallel feedback designs in the

literature. This makes them very attractive for the computation

of the FFT in the most demanding applications.

3.4 REORDERING OF THE OUTPUT SAMPLES

Reordering of the output samples is an inherent problem in FFT

computation. The outputs are obtained in the bit-reversal order

in the serial architectures. In general the problem is solved

using a memory of size N. Samples are stored in the memory in

natural order using a counter for the addresses and then they are

read in bit-reversal order by reversing the bits of the counter[5].

Fig 5: Solution to the reordering of the output sample

Fig 6: Basic circuit for the shuffling the data.

In embedded DSP systems, special memory addressing

schemes are developed to solve this problem. But in case of

real-time systems, this will lead to an increase in latency and

area. The order of the output samples in the proposed

architectures is not in the bit-reversed order. The output order

change for different architectures because of different folding

sets/scheduling schemes.

IJCSEC-International Journal of Computer Science and Engineering Communications, Vol.2 Issue.3, May 2014. ISSN: 2347–8586

365 Online: www.scientistlink.com

We need a general scheme for reordering these samples. One

such approach is presented in this section. The approach is

described using a 16-point radix-2 DIF FFT example and the

corresponding architecture is shown in Fig.6. The order of

output samples is shown in Fig 5.

The first column (index) shows the order of arrival of the

output samples. The second column (output order) indicates the

indices of the output frequencies. The goal is to obtain the

frequencies in the desired order provided the order in the last

column. We can observe that it is a type of de-interleaving from

the output order the final order. Given the order of samples, the

sorting can be performed in two stages. It can be seen that the

first and the second half of the frequencies are interleaved. The

intermediate order can be obtained by de-interleaving these

samples as shown in the table. Next, the final order can be

obtained by changing the order of the samples. It can be

generalized for higher number of points; the reordering can be

done by shuffling the samples in the respective positions

according to the final order required[6].

Fig 7 :Linear lifetime chart for the 1st stage shuffling of the

data

A shuffling circuit is required to do the de-interleaving of the

output data. Fig.6 shows a general circuit which can shuffle the

data separated by R positions. If the multiplexer is set to ”1” the

output will be in the same order as the input, whereas setting it

to ”0” the input sample in that position is shuffled with the

sample separated by R positions. The circuit can be obtained

using lifetime analysis and forward-backward register

allocation techniques. There is an inherent latency of R in this

circuit. The life time analysis chart for the 1st stage shuffling in

Fig 7. It uses 39 seven complex registers for a 16-point FFT. In

general case, a N-point FFT requires a memory of 5N/8 - 3

complex data to obtain the outputs in natural order.

4 RESULT AND DISCUSSION

The simulation result of the proposed 4 parallel DIF –FFT

architecture for all stages combined with the data shuffler is

shown in Figure.

 The inputs are given to the first stage of the 22, 16 point DIF

FFT. The first stage calculates the 16 point DIF of the inputs.

The output of the first stage is given to the second stage which

calculates the 8 point of the given values. These values are

given to the third stage which calculates the 4 point of the

values and finally to the fourth stage which calculates the 2

point of the given values. The output values are bit reversed.

The data shuffle is carried out in each stage of the 16 point DIF

FFT operation.

Fig 8: Simulated output.

The input real and imaginary values for the proposed DIF –FFT

architecture is shown in Fig 9 . A sample value from the input

is taken and theoretical calculations are carried out. The result

of the calculations are shown in the below Fig 10. The result

verify that the time domain signals are converted into frequency

domain signals.

Fig 9: REAL & IMAGINARY VALUES

IJCSEC-International Journal of Computer Science and Engineering Communications, Vol.2 Issue.3, May 2014. ISSN: 2347–8586

366 Online: www.scientistlink.com

Fig 10: Domain verified simulated output.

5. CONCLUSION

In this paper, a radix 2K algorithm and 512 point

reconfigurable radix 2k FFT architectures have been proposed

for OFDM-based WPAN applications. The use of radix 2k to

feed forward (MDC) FFT architectures has shown that feed

forward structures are more efficient than feedback ones

when several samples in parallel must be processed. In feed

forward architectures radix 2k-can be used for any number of

parallel samples which is a power of two. Indeed, the number

of parallel samples can be chosen arbitrarily depending of the

throughput that is required. Additionally, both DIF and DIT

decompositions can be used. Additionally, data shuffling has

also been implemented

REFERENCE

1. Mario Garrido, Member, IEEE, J. Grajal, M. A. Sánchez,

and Oscar Gustafsson, Senior Member, IEEE, “Pipelined

Radix-2k Feedforward FFT Architectures”, IEEE

transactions on very large scale integration (vlsi)

systems,vol 21,No 1, January 2013.

2. Jes´us Garc´ıa, Juan A. Michell, and Angel M. Bur´on,

“VLSI Configurable Delay Commutator for a Pipeline

Split Radix FFT Architecture ”, ÏEEE transactions on

signal processing, vol. 47, no. 11, november 1999.

3. Liang Yang, Kewei Zhang, Hongxia Liu, Jin Huang, and

Shitan Huang , “An Efficient Locally Pipelined FFT

Processor ”, IEEE transactions on circuits and systems—ii:

ex.press briefs, vol. 53, no. 7, july 2006.

4. E. H. Wold and A. M. Despain, “Pipeline and parallel-

pipeline FFT processors for VLSI implementation,” IEEE

Trans. Comput., vol.C-33, no. 5, pp. 414–426, May 1984.

5. S. He and M. Torkelson, “A new approach to pipeline FFT

processor,”in Proc. of IPPS, 1996, pp. 766–770.

6. P.Duhamel, “Implementation of split-radix FFT algorithms

for complex,real, and real-symmetric data’’IEEE

Trans.Acoust.,speech,Signal Process., Vol.34,no.2,pp.285-

295,Apr.1986.

